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Reptation in linear systems
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A model suitable for reptation in linear systems under a driving field is proposed. Its dynamics is based on
the decoupling of opposite repton jumps, and is essentially different from reptation in higher dimensions,
namely the Rubinstein-Duke mod@RDM). The stationary density and correlation functions are calculated
perturbatively in the driving field. A meaningful mean field theory is also derived. Diffusion exhibits a strong
drift velocity and band collapse. Also a peculiar scaling behavior is found. The results address the sensitivity
of reptation process to the rules of motion and the boundary condifi8d£63-651X%97)12912-9

PACS numbe(s): 83.20.Fk, 05.40kj, 82.45+2

[. INTRODUCTION ence of strong intersegment correlation represents, however,
the main source of failure of many attempts towards a theo-
The process of reptation is generally regarded as one attical solution of the model, which is particularly resistant,
the basic mechanisms governing polymer diffusion through &.9., to any perturbative approach, notwithstanding the sev-
gel matrix. Its main ingredient is the accumulation of poly- eral steps forward that have been m&2g,5,9.
mer units inside a gel pore, and the subsequent redistribution Although the rules of motion in the Rubinstein-Duke
to neighboring pores. After the introduction of the idea by demodel(RDM), to be given below, are simple and natural, the
Genned[1], it has developed into a basic ingredient in theanalysis of the model is complicated and has so far eluded a
understanding of the polymer dynamics in a gel. Recentlycomprehensive understanding. The model contains two pa-
Rubinstein[2] and Duke[3] have given a lattice realization rameters: the length and the driving fieldE. The limit E
of the reptative motion, which makes it possible to simulate— 0 for fixed (large N is well understood. It leads amongst
reptation and to test the basic features in a quantitative way.
In the Rubinstein-Duke modé€RDM) gel pores are repre-
sented as a regular lattice of cells separated from one another
by site obstacles. The polymer is schematized as a chain
whose basic unitghe reptonsare segments of the order of
its persistence length. This way reptons can move without
mutual tension along the chann@r tube of cells that the
polymer traces out. Polymer self-avoidance is neglected and
chain continuity is implemented by the requirement that
neighboring reptons occupy either the same or adjacent
pores. Diffusion is realized by subsequent jumps of reptons
to neighboring cells along the tube, whereas end reptons may
also move to outer pores, feeding thus new cells to the tube.
If a reference direction is chosen along the lattice diago-
nal, the relative coordinate between successive reptons may
assume only three values:-1,0,1}; see Fig. 1. Likewise, a
repton may move either up or down with respect to the ref- F|G. 1. Repton model of polymer diffusion through a gel. Gel
erence direction. Thus reptation can be depicted as a on@eres are represented as a reguladimensional lattice of cells
dimensional diffusion process wittt 1 or O states and up- (hered=2). Lattice sites represents obstacles to the motion of poly-
ward or downward moves. Acidic polymers, like DNA, mer which thus sneaks from cell to cell. Polymer is conceived as a
become charged when solved in a gel. If an electric field ishain of N+ 1 reptons, which represent its persistence length units.
applied to the solution, the diffusion is driven along the field,E is the driving field serving also as a reference direction. Bejng
which is chosen along the reference direction. This feature ifhe coordinate along of jth repton, then relative displacement of
incorporated into the RDM by assigning a bias to hoppingtwo neighboring reptonsy;=x;—x;_;, may assume three values:
rates, according to field direction and strength. y;=+1,0-1 in lattice units. Reptons may hop either up, at a rate
Despite its schematic nature the RDM exhibits a very richB=expe/2, or down, at a rate8~'. Each move corresponds to
and complex behavior and both theoretical resi2t4,5,9 exchange the state of two neighboring, one of which is 0, and
and simulation$3,6,7] compare quite well with experiments the other+1 or —1. So that chain motion projected aloBgmay
on polymer diffusion in gel§9]. The main physical achieve- be regarded as a 1d diffusion processtdf and— 1 particles along
ment of the RDM consist of grasping the essential features afl sites with open boundary conditions, because end reptons may
chain reptation, which induces strong correlation among seg?op to unoccupied cells, thus providing othed’s or —1's. The
ments. The process of tube renewal at either ends of thgtate vector iy=(y,, ...,yn). Considering the example here dis-
polymer is also very well accomplished in the model. Presplayed,N=10 andy=(—1,+1,04+1,+1,—1,0+1,+1,0).
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others to a drift velocity) which is proportional toE and glE

inversely proportional toN. Less understood is the scaling B=exp(el2), &= kB_T’ D
limit in which E—0 andN—c« with an appropriate combi-

nation of powers o andN kept fixed. This scaling limit while downward moves are biased by a fadgr'. | is the
may be regarded as the thermodynamic limit for the stationprojection of the lattice constant along the reference direc-
ary state. In contrast to equilibrium one cannot simply studytion.

the limit N— at fixed (smal) E, as this leads to situations  Takingx; as the coordinate ofth repton along the pre-
where the stationary state is never reached as the limit of af¢"red direction(see, e.g., Fig.)1 polymer configuration can
arbitrary initial state. be expressed in terms of thdl relative coordinates:

This paper is a contribution to the understanding of the/i=Xj~Xj-1, ]=2,3,... N+1, corresponding also to the
sensitivity of the scaling limit with respect to the details of Ofientation of the segment connecting two neighboring rep-
the rules of motion of the RDM. We will exploit the ambi- tons(see Fig. 1 _ _ _ _
guity, inherent to the RDM, in the mapping from the tube 1he probability densityP(y,7), for chain configuration
configuration to the one-dimension@dD) diffusion process Y=(Y1.Y2. ... .yn) attimer, evolves according to the mas-
representation, to define a simpler repton model which, i€’ €quation
1D, would be more faithful to the spirit of the motion rules dP(y,7)
as the actual 1D version of the RDM is. As it will appear, the i
model is not trivial at all; a systematic expansion in the driv- dr
ing field is feasible and features a well defined scaling limit . -~
theory. Moreover a mean field approximation provides antvhereW(yly’) are transition rates, to be specified below.
explicit scaling solution which compares also quite well with N view of a more convenient description, the model may
numerical simulations, both qualitatively and quantitatively. 0@ rewritten in a lattice-gas language, exploiting a quantum
The results are quite different from the physics of the RDM,Hamiltonian formalism. Consider again the chainlf-1
showing that the motion rules of the RDM are well taken inféptons, each segmey is regarded as a site which may be
a higher dimensional embedding matrix and shedding ligh€ither empty or occupied by: an A-particlg,=1, or a B-
on the intricate correlations which develop in the stationaryParticle,y;=—1. Particles may hop to neighboring empty
state of the RDM. sites and be created or annihilated at both ends. The stochas-

In the following section we introduce the model and thetic time evolution of the system is described by a
appropriate formalism to deal with the average properties ofchralinger-like equation:
polymer diffusion, which are then derived in Sec. Ill from
the microscopic model. The perturbative theory of density d[P()) —H|P(7)) 3)
and correlation functions is developed in Sec. IV, and its dr ’
continuum, scaling limit is presented in Sec. V. In Sec. VI
we work out a mean field formulation of the problem, and inWhere
Sec. VIl data from Monte Carlo simulations are compared to
analytic results. Sgction VIl is devqted to conclus@ons. Ap- |p(7)>22 Py, 7)ly), (YIH]y)=W('ly). (4)
pendixes A and B illustrate, respectively, a convenient refor- y

mulation of the problem in spin language, and the details . ¢ ity i val h lati
about the perturbative expansion. Conservation of probability is equivalent to the relation

=2 [WOY)PWY . )= WY YPY. D], (2
y

(s|H=0; (s|=2 (yl. (5)
II. REPTON MODEL AND QUANTUM HAMILTONIAN Y

FORMALISM (s| is called the projection state and it is used to define time-

As mentioned, in the RDM the gel matrix where diffusion dependent average of an observable, Gdy), as
takes place is represented bydadimensional hypercubic B . o
lattice of cells(gel pore$, whereas each lattice site is an (O(1))=(s|O(y)|P(7))=(s| O(y)e""|P(0)). 6)
obstacle to polymer displacement. The polymer is a chain
N+1 reptons connected by segments. The chain moves

:2“;332 ;?ae Crigi:fjfgrg':;ltofr%?alorrﬂetg f?;"g]ﬁ] tzrli(]gll: The A particles exclude each other and the same holds for
P y 9 y P pavie) the B particles. Also theA particles exclude th& particles

reptons can move only to pores that the chain already OCCLE1d vice versa. So we have to use hard-core boson operators
pies, thus ensuring that reptation is the only diffusion mecha- n ~ 12 Bt
r rather spin-1 operators. We tala{— M, a;=Mj",

nism; (iii ) in each pore along the chain there must be at lea: { ) N
one reptonyiv) en% reptonsgmay also move to neighboringsbiT: M_jsz' bj=M;{* as creation and annihilation ogeratolrls of
empty cells. A particles andB particles, respectively, on sije nj=M;

To make it also a model for electrophoresis, a smallandn?=M:* are the corresponding site number operators of
chargeq is assigned to each repton and an electric figlds ~ particles, andh)=1—n?—n’=M??. MP%is a 3x 3 matrix
applied along the lattice diagonal, fixing also the referencevith elements K179, ,= 6, 8, acting on sitg [10]. The
direction. Thus spatial symmetry is broken, and upward-commutation relations follow from the matrix representation
move rates are biased by a factor of these operators. Thus the stochastic operator is

oﬁ'he definition of the stochastic operataf;, will then deter-
mine the repton model completely.
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FIG. 2. Example of an unremovable hair-pin configuration. If FIG. 4. Here a 1D repton model is shown, where the quick

douﬁ)le ?cgupancjcy of &; . me;:d . aIIowei thif} rgigr;]ht bel inversion of a folded configuration through a double occupancy
easily eliminated, e.g., by means of the process sketched here, eat%namics is a realistic process.

ing then to unphysical consequences. In the second snapshot dotted

li ts the O t virtuall ing th h the obstacle, . .
NG represents the L segment virtually going throtgh te obstac eFlgs. 2 and 3. Therefore a conceptually legitimate process

N—1 such as in Fig. 3 is then equally forbidden as that in Fig. 2.
_ -1 Since every cell had upper or lower nearest neighbors, the
H=B1(B)+ (B )+ ,—Z’l %i(B), @ RDM neglects removable hair-pin configurations, such as in
Fig. 3, once every times. Hence it becomes more and more
where accurate agl increases. In one dimension, constraints im-
plied by interaction terms in Eq7) are thus too strict, there
B;(B)=B(a;+db/+nP—1)+B Y(da'+b;+n?-1), are actually no obstacles to the polymer motion and any loop
(8a) may be removedsee, e.g., Fig. ¥ So we are led to consider
a 1D repton model in which thA particles andB particles

T,(B)=B(a/a; 1 +bjb/,; —n’n?,;—nPn?, ) may interchange via the process sketched in the middle of
. + + a0 o0b Fig. 3 or equivalently in the sequence of Fig. 4. By allowing
+B (&aj, 1t bibj i —ninj = ninj ). the simultaneous presence of ArandB particle in the same

(8b) pore, a+ 1 occupation, each segment can be in four possible
states: O+ 1,—1,+1. We take the particle operatoas and
As is noted, the dimensionality survives only as a param- b asa’=a'®! andb™=I®b', acting on a product space:
eter in thed-fold degeneracy of moves stretching end-|y;)=|y;)a®|y;)». This way double occupation is permitted
segments in3; and By. The similarity with quantum me- and the annihilation and creation operators fulfill the stan-
chanics is not as powerful as one would like it to be, sikce dard hard-core boson commutation relatiemmuting on
is not Hermitian and aad hocdefinition of time-dependent different segments and anticommuting on the same seg-
average is required; see E@). men). Thus we are led to the following stochastic operator:
As double site-occupancy is forbidden, the motion rules
as described by the interaction termsZindo not allow re- N . + Lt . :
moval of “hair-pin” configurations such as that depicted in H:Z [B(aj_;aj—aj_1aj_1a;8)) +B™(aj_13
Fig. 2. The first and last state, which are different by the =2
prder of the intermediate pair 1,-1, cannot be transformed - aj’[ 1813, a]T)] +B(a),—aya) + B~ Y(ay—ajay)
into each other by an allowed intermediate step. The one

drawn leaves an empty cell in the path of the polymer and N

disrupts therefore the integrity of the chain. In the subse- B 1(aI—a1aI)+B(a1—aIa1)+Zz [B~ (b1,
quent Fig 3 a sequence of configurations is drawn which is .

quite well possible in the spirit of the RDM. The first and last —bj_1b/_;b/b;)+B(bj_1b] b/ _;b;_;b;b])]
configuration are described by the same sequences as in Fig.

2. The intermediate state is formally not allowed by the mo- +B~ (b}~ bybl) +B(by—bfby) + B(b]—b;b])

tion rules of the RDM, but perfectly correct in the spirit of
repton-modelization of polymer diffusion. However in RDM
thed-dimensional chain is mapped onto a 1D process, which

washes out the distinction between the configurations ofVe take this operator as defining our one-dimensional
model. The great simplification is the decoupling of the mo-

- tion of the +1's and —1's. IndeedH=H,(B) + Hy(B),
hence the probability density factorizd®(7))=|P.(7))®
|Py(7)). Moreover, sinceH,(B)=H,-,(B™ 1), +1's and
—1's exhibit the same dynamics under opposite field, and

+B~Y(b;—blby). 9

- ' . one needs to concentrate only on one species of particles. In
the remainder we will focus our attention enl segments
B b a; aj, only, namely ona' operators, then, unless otherwise speci-
(+1,+1,-1,+1) (+1,+£1,0+1) (+1,-1,+1,+1) )

fied, ana label appended to any operator or observable will
FIG. 3. Example of a removable hair-pin configuration which be always understood.

might be eliminated through a sequence of two moves, displayed Decoupling upward segments from downward ones does

here, provided double occupation,1, is allowed to segment states. not make the model trivial. For instance the stationary prob-
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ability density does not factorize into the product of singleln the simple cases=0, everything is homogeneous,

segment densities, contrary to what one might expect. Indee@l1 )= 1, so it is convenient to shift every density by such

it is easily seen that the state . .
y zero-field solution. The new density operators ke n; — 3

and have the average bounded by%s(mJ-)sl. In zero
|Pprod>:]1:[l (@+p;aD[0), ai+p=1 (10 el (m;)=0. Som; behave as a spif-variable. Further-
more one may use a different field parameter, namely
wherep; is the average density @f particle at segmerjt, is

i i -0 i _B-B7!
stationary, i.e.H|Ppog =0, if ——— 1—tanh?— (17a
Bgj_1p;—B 'pj_10;=0 (j=2,...N-1), (113
1 and then
Bp,—B "0,=0, (11b)
(1 t) (1-t)
Bgy—B lpny=0, (110 B= (B+B™Y), B‘1=—(B B~ Y).
whose only solution is the trivial zero-field one: (17b

pj=3:Vj=12,.. N andB=1. Thus, strictly speaking, in Since the system is symmetric under exchange tfs with

the stationary regime segments are correlated, but as we shahs and simultaneous field reversi¢see Appendix A for a

see in the remainder, long chains possess remarkable megatailed discussion about symmetriestof, one has

field properties. Since polymer diffusion process is conve-

niently described in terms of average quantities like drift (mj>(t)=<aj JT_ %)=—<mj)(—t). (18

velocity, V and curvilinear velocity,7, we are to derive the

corresponding time evolution equations from the micro-Hence,(m;)(t) is odd int. Likewise, the average of any

scopic dynamics, and eventually obtain an approximated sgeroduct of an oddeven number of differentm;’s is odd

lution. (even in t. The dynamics is also invariant whenl's and

0’s are interchanged and the segment labelling order is re-

Ill. PARTICLE DENSITY AND CURRENT versed,j —N+1—j. This property impliegm;) is symmet-

ric around the middle point of the chain,
A particles represent upward segments, the density opera-

tor nj= aTa, measures the density of1 at segmenj. Its (my=—(My+1-j) (19
evolution equation is obtained from E(8,6) as
g and thus(my 1)) =0.
a _ The stationary state is obtained imposidgg 7(m;)=0,
a7 M) = (sInH[P(n)=(slln; H][P(n) (12 which, through Eq(15), implies

since, due to Eq(5), in general Up=JVj=12,.. N, (20

(O(yyH)=([O(y),H]). (13  with 7 stationary current, constant through the chain. Com-
bining this with definitiong16), one is left with the system
(s| possesses another useful prope{rw,=<O|H}\‘=1(1+aj),

t
S0 J:<mj>_<mj+1>+§[4<mjmj+l>_l]
(slajoy)[P(n)=((1=n)O(n)); ,
X(j=1,2,... N—-1), (219
s|a;O(y)|P(7))=(n;O(7)), 14
(sla 0[P (7)) =(n;O(7)) (14) I amy—t. o
and the commutator averaggn;,*]), is easily calculated
in terms ofn; only. Simple algebra yields then the continuity J=2{my)—t, (219
equation
wherej= (2/B+B~1)Jis also an odd function df like 7,
since it is a current anth- O(g). Equation(21) is typical for
E<ni>:<fifl>_<fj>v (15 an open hierarchy with more unknowns than equations in
each stage. If we had knowledge about the average of the
where particle currentgy;), are defined as product(m;m;_ ), the values of the single averagas;)
would be determined. Anticipating that the average of the
(J))=B7Yn;(1-nj;11))—B{(1-n)n;. 1) product is of a higher order we omit it here to get a notion of
_ the structure of the lowest order approximationngf. The
(j=12,...N-1), (168  equations are easily solved and the solution is denoted as
(Joy=B " X1-ny)—B(n,), (16b) (mpy=tmP+0(t%), j=tjY+otd), (22)

(Un)=B Hny)—B(1—ny). (160  with
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2j—-N-1 1
mb=——— (=12,..N), (233 JO=mP—m, -3, (263
N+1 JY=2mpP -1, (26b)
_](1)= - W (23b)
JY=—2m-1, (260

By omitting the product of the averages the soluti@3)
becomes strictly proportional tb. Note that this solution
obeys the symmetry relatiori8) and (19).

with the solution anticipated in Eq23). Then we may pro-
ceed further to considen{?. The general term is eaggee

Appendix B:
IV. PERTURBATIVE EXPANSION OF DENSITY, AamP=m? +m7, +m? +mF
CURRENT, AND CORRELATION FUNCTION
2=sj=l-2;IsN-1). (27)
When e is small, so ist= %+ O(&?), providing an ideal ) ) _ _
weak field expansion parameter. We make the following anSPecial equations hold for the cases wherel, j=I—1
satz for the expansions in powerstof andl = N, which connect them to the lower OrdETj(l) . We
have spelled them out in Appendix B. The form of Eg7)
J=tD+3,3 1 0(15), (243 s that of the discrete Laplace equation. The solution is de-
termined in Appendix B and reads
(mj>=tm§1)+t3m§3)+0(t5), (24b) 2N N+1 N+1
m2=—"—mPmV- ——— (mP—mP)y— ——
2@ 1 t4m(® 4 O(t6 MON-1 T aN-n T T 1eN-D)
Th lation is long- h | f f
(mjmkm,>=t3m},3g’|+0(t5). (240) ze) correlation is long-ranged because the actual form o

m](’I is essentially determined by boundary conditi¢BE)
that globally influence the solution. Concerning in particular

Th h incl ible with th i ;
e powers that are included are compatible with the Symadjacent segments—j+1, we have

metry relation(18). The essential point of the proposed ex-
pansion is that the average of a productnof/ariablesm;

(1) + _
starts with the powet". For the product of a pair this is mﬁlrl:ﬂ(m}l))zﬁt m _(N+DN=2)
self-evident, since a zeroth order is excluded, due to the lack ’ N—1 (N-1) 16N(N—1)
of correlations in the undriven system. This justifies the so- (29

lution (23) as the first order irt. The justification for the
ansatz(24) is based on the fact that for every product of
allowed combination(no equal indicesone can write the
equation of motion as

This is a convex parabola, hence adjacent segments have a
stronger tendency to be anticorrelated in the bulk of the
chain.

Knowing m{?’, m{® can be calculated. From E¢p1) the
d general equation set famj(“) (n>1) is
——(mymy- - mg =(mymy- - - my  H]) n_ - (n ne1)
dr JM=mM—m{" +2m"Y (j=1,2,... N-1),
:<mjm|...[mk"]—(]>+... (303

+(m; HIm - - my). (25) JW=2m{V=—-2m{". (30b)

The stationarity condition requires the left-hand side to bén V'eW_Of Eq. (19) every_observablel)cqntamlrrg,- IS more
zero. Now the commutatdm; , ] involves terms linear in conveniently expressed in terms mf  in place ofj, )as It

them, and coupling terms containing the product of the latterdirectly embodies the symmetry. G|v§n the formngf?) we

and its neighborsy; ;. Thus a product of factors couples May then solve Eq.(30) for m® by the ansatz
through the Hamiltonian to a product of+ 1 factors, as we  m{¥= k;(m{Y)3+ x,m{!), which provides

already encountered in ER1) for n=1. By the ansatz that

term starts out with a®©(t"*1) and the coupling ir{ in- (3= 8N? (mi)3— (2N*—3N+3) m? (314
volves another factar. So the lowest order of the product of oo 3(N=1) 12(N—-1) e

n factors can be calculated without information of the higher

correlation functions. Furthermore higher orders of the ex- 3_ _ N+1

pansion of then-product average, sa@(t"*2P), are coupled YN (31b

to O(t"*1+2(P~1)y of the (n+1) product, which have been

calculated at a previous stage of the expansion. So, as w&/e have also calculated the leading order(ofjm,m;),
know m(!) we can recursively build up the solution in any m](3k)| in terms ofmj(l) andmj(,zk) (see Appendix B for details
order. To illustrate the method we first write down the equa-This function displays similar global correlation effects de-
tion for m{™, which is obtained expanding Eq@1) in t: termined by BC. We can then proceed further to obtaffy,
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which is a polynomial of fourth order im{™. Then from Eq.
(30) we argue tham(® must be of the form

i = (i) mp(mit) 3+ pamV. (32
Direct substitution yields
6Nt —16N*+52N%-4N?
MTEN-1)(N=2)" 72" 9(N—1)(N—2) '
(33
_ 22N°—130N*+ 235N+ 225N%— 270N — 180
Ko 360N(N—1)(N—2) ’
(34)
and
8N*+33N3+303N?— 262N — 180
J®= (35)
720N%(N—2)

Further steps in the perturbative expansion would require

knowledge ofm;m,m;m,) and so on.

In the limit N—o, the lattice model is amenable of a

continuum approximation in terms of~ j/N, wherex de-

rivatives substitute finite differences, neglecting systemati-

cally higher orders in N. In this “hydrodynamic” limit
(my), (mym,) and so on, are determined by simpfErtia)
differential equations which we give in the next section.

V. CONTINUUM LIMIT THEORY

When the chain is very long one may neglect the detail
relating to each single segment at length scales smaller th
1/N. In a coarse grained description any observable may b
considered as a smooth function of the central variable

defined as
iz e, -
So the continuum analog of E(R4) is
(M) =tmP(x)+t3m(x)+---, (37a
(memy) =t?m@(x,y) +t*mD(x,y)+---, (370
(mmymy)y=t3m®(x,y,z) +--- (370

Considering leading terms in the limit— oo the perturbative

results we obtain in Sec. IV and in Appendix B are summa-

rized as
ottt 2 5N o 38
J=737 N 24" g0 TOUY: (389
t| = +t2N X +t*N?2 2 2 S+ 11
(my = 313 TN X 9 360"
+O(t7) (xe[— 2 ) 2]) (38b

3093
Xy (x=y) 1 (X°y+Xxy”)
—t+2] 7 .
(mym,)=t [ 2 8 16 "N 2
(C=y®)  (XPy—xy?) (x*+y?)
T 6 T 2 8
— 1—2+ T+ 4_8 + O(t )
X(— 3 <x<y<3), (3809
3 3 (x—=2)y (x+z) 3
+0(t% (- isx<y<z=1). (380

So we have evidence that in the lifNt>1,t?N has to be the
suitable power combination for the thermodynamic scaling
limit: N—o, t—0, with A=t?N finite. We can implement
the scaling limit by the ansatz
(my-omy y=t"m(xy, . ..

XniN). (39

In terms of these continuous functions EQ1) becomes
J=t[mO;N) —m(x+ 1/N;\)]

+2t[2m(x,x+ 1/IN;N) — 3], (403

— 1/2N;\) —t.
(40b)

J=-2tm(— %+ 1/2N;\)—t=2tm(}

they

1 V|ew of the perturbative results we take as scaling form
or

“t| i)
J=t —§+NJ(>\) : (41)

We expand around and count an orde ™! as equivalent

to t2. We then find to leading order

- dm(x;\) -
J(N)=—————+2Axm(X,X;\) (42
dx
and the boundary conditions
m(zN)=—m(— 3;0M)=1% (43

The value ofj (\) has to be chosen such that the boundary
conditions are fulfilled.

In a similar way we obtain fo'rﬁ(x,y;)\) the equation

V2M(X,y;N) = 2N [ My (X, X,Y;N ) + Mo(X, X, Vi )

+ M6y, YN +Ma(xy, Y] (44)
with the boundary conditions
-~ m(x;\)
m(x, 3 ;\)=—7—, (459
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_ _ 1 gm(x;:\) of slow diffusion of +1 segments from the head of the
My (X, X;N) —My(X,X;N) = > o (45D chain,x= i, where they are supplied at raBe towards the

tail, x=— 3, where they disappear at the same rate.\As
where i.e.,t and/orN, increases, the profile @fi(x) becomes more
- and more flat and it squeezes onto thaxis, just to rise or
IM(Xy,**,XniN) 46) fall down sharply upon approaching respectivehy 1/2 or
Xk ' x=— 3. In these conditions-1 segments are constantly fed
The general structure of the hierarchy is clear. In the bulktm0 (;[:te c((:)rr]r?ilgga;r cl)tri Tr?s%u\ll\l/(h%fe ctgl??/s:t:ys;?nmﬂ ri?: zecr:n;ﬁg

M(Xy,- -~ Xp;A)  couples  to a higher member gpplies to zeros created at the chain tail. In the bulk the
M(X1,- - X +1,A) @and at the boundaries to a lower membergpironment is essentially randogm;)=(1—n;)= %, due to

M(Xq, -+ Xn_13N). the the mixing of the two opposing streams-b1’s and 0's.

Such a hierarchy is difficult to solve. We must either e may also compare MF and exact results on the profile,
make an assumption of the higher correlation function inm(x), up to O(t®). From Eqgs.(48) and(49),
terms of the lower onegas we do in the next sectipnor

Mi(Xq," X IN) =

make a perturbation expansion in powers\ofas we have X, x3 X a2 x> X x
done in the previous sectiprDue to the fact that the cou- Mye(X) =t §+t N(g 24 +t'N (1—5 36" 360
pling term to the higher correlation function has a factan

front, the lower correlation functions decouple in the expan- +0(t"), (519
sion from the higher ones. As one observes from the result

(38) this expansion has the simplifying feature that the terms t t t2 5N .

in the expansion are polynomials in the. So solution of IMF=~ 5" 551 227 350 T O (51b)

the hierarchy means in essence matching of the coefficients

of the polynomials. As we have noticed in Appendix B, one\when compared with Eq:38) the discrepancy is of order
has in general more equations to satisfy than coefficients tgN so the MF approximation is expected to fail t8N~1.
play with. However, the equations turn out to have the rightrhe second term in the expansionnfx) is underestimated

interdependency to allow a unique solution. by a factor of 2 and the difference increases at higher orders,
and indeedny(x) remains belown(x) for increasing val-
VI. MEAN FIELD THEORY ues oft; compare also Fig. 7. Nevertheless, within this range

Our mean field(MF) ansatz consist of approximating it pr_owdes_ in a simple form a meanlngful determination of
~ _ ~ 2 Thi s to th chain prof_lle and current. To estimate the o!eg_r_ee of accuracy
m(x,x;A) by [m(x;\)]® in Eq. (42). This amounts to the 4t mean field solution(48) as well as its reliability, a com-
usual approximation of the average of a product by the prodparison with numerical simulation is also desirable.

uct of the averages. We are thus led to the MF equation Before going on to discuss simulations, it is, however,
- _ worth stressing that perturbative results fare very robust.
dmye(X;\) N = 4 Indeed in the limitN— o with A =const., the corrections are
AMGe(N) = J me(N ), (47 3
dx small, of ordert® or t/N, as shown by Egqs51) and (38).

» ] ] Moreover, the discrepancy between the MF and exact value
and the same boundary conditiofé3). Equation(47) is  of ; pecomes irrelevant under such condition. Hence

straightforwardly integrated, giving J=— (t/2)+ 0O(t% and band collapse is predicted for this
repton model in the limitN>1. Sincej is essentially the

Mye (M) =ta(A)tan2Aa(n)x), (483 drift velocity, V=—2J, soV is insensitive toN when the
7= —20c2(0), (48b) latter is large.
with g(\) determined by VIl. COMPARISON WITH THE SIMULATIONS

Monte Carlo(MC) simulations of our repton model have
2q(\)tan(a(M))= 3. (49) been performed, always restricting tol’'s (Fj)ynamics, with
move rules and rates as dictated By . Chains ofN=100
and 200 segments have been considered. For each value of
t<]0,1[, about 2< N* MC steps have been iterated and, after

In limiting casesq(\) is easily calculated

1

q(\)=—= for gr<1, (509  Waiting aboutN* steps for thermalization, chain configura-
24\ tions have been sampled evely steps(i.e., every whole
chain sweepto determine the average densitigg=n;— 3
q(N) = % for A>1. (50b) By means of a one-parameter nonlinearqfi) is then

calculated fromm; assuming the MF form

The solution(48) has the required scaling form and its sim- —
plicity allows us to illustrate the main features of reptation m(x) =g tan 2\ qx) (52)
process. Fohg<<1, myg(X) is linear inx as a consequence t
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FIG. 5. Plot of parameteg(\) determined by fitting simulation
data for segment density(x), to the expected MF behavior, for
N=100. Behavior of fitted valuegopen circles is in excellent
agreement with numerical solutiofdashed ling of the equation
determiningg(\) in the MF theory.

according to Eq(48). Fitted values ofg(\) are plotted in
Fig. 5 againsi\. The numerical solution of Eq49) is also
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FIG. 6. Average currentj (t), of +1 segments calculated from
simulation of chains ofN=100 and N=200 segments. The
asymptotic,N— o, prediction,j=— t/2, is also plotted for com-
parison (dotted ling. Since N is not very large,j(t) departs
slightly from the ideal curve due to smallN corrections(dot-
dashed line, witiN=100), as predicted by perturbative results, Eq.
23).

VIII. DISCUSSION AND CONCLUSIONS

shown for comparison. Agreement between MF theory and

simulation data is excellent.
The average current

— 2
= 71‘7
B+B

(53

We have considered a genuine one-dimensional version
of the Rubinstein-Duke mod€éRDM) for reptation. In the
RDM the configurations of the polymer are mapped on a
one-dimensional sequence. In this map the distinction be-
tween removable and nonremovable hairpins is washed out
(see Figs. 2-¥ The higher the dimension of the embedding
matrix, the less frequent these removable hairpins occur. In a

is also computed and compared with our analytical resultlinear system the paths of the polymer contain only remov-
= — t/2, in Fig. 6. We obtain a good agreement even thouglable hairpins, which makes the dynamics essentially differ-

N~ 100, hence for relatively short chains.

Finally Fig. 7 displays the rescaled plotﬁj against the
MF expectation

Mye(X)

tq =tan(y),

(54)

with x=2Aqx, exploiting the fitted values of(\). Curves
collapse well for smallet values, while they slightly depart
from theoretic prediction whehincreases. However, even in
the region\ > 1, where MF is expected to fail, the qualitative

behavior ofﬁ- is well reproduced by such approximation.

ent from the higher dimensional cases. It means that forward
(+1) and backward £ 1) segments may interchange and
when they are allowed to coexist the motion of the two spe-
cies is completely decoupled. While the RDM may be seen
as a spin-1 chain, the linear version maps on a set of two
decoupled spirk-systems.

The resulting dynamics is still far from trivial due the
basic feature of all reptation models that the chain configu-
rations can only be refreshed by shrinking and growing at the
ends of the chain. As the linear systems have no internal
obstacles the motion of the chain under the influence of a
driving field is much faster. Indeed due to decoupled dynam-
ics hairpins are just trailing or removed, e.g., such as those

Simulations thus provide evidence that the MF theory repsketched in Fig. 4, essentially at the same rate as a simple

resents a rather accurate approximation wheti, and it is

repton drift, namely8 — B~ 1~t. This makes the drift veloc-

meaningful also for larger values, namely under strong elecity linear in the driving field andndependenof the chain
tric field, where correlations are expected to be most relfengthN. In the language of electrophoresis it means a total

evant.

band collapse.
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10.0 : : . The correlations in the chain are built up from the bound-
| aries and show an unexpected behavior. For smitle cor-
< t=0.09 i relations are small but significantly different from mean field
° t=0.18 | predictions. In the larg& limit we see the disappearance of
:Zgi; these effects, the density profile behavitm;), at fixedt
50t A;0:45 :“:Ti 8 and for increasing\ displays an almost flat profile in the

bulk, characteristic of a random environment, with two op-
posite and sharp wings at the ends. Such two localized ex-
cesses of density are sufficient to maintain the current
through the whole chain. This is the reason why the MF
approximation does so well in the largelimit.

In the RDM neither an expansion in powerstois pos-
sible nor a meaningful mean field assumption. The scaling
behavior of the RDM, as it is suggested by simulations of the
model, involves the combinatiadt [4,7,8]. The drift veloc-
ity is much slower than the result we find here and depends
in the weak field limit on the combinatiarN [4,5,7,8. Also
it is not likely that the shape of the density is a function of
b the parametex, which varies on the scald. There is evi-
| dence that near the endpoints the shape varies on the scale

-10.0 “ : : NY2[11].
-1.5 -0.5 0.5 15 : . .
Given the fact that the two types of motion are simulta-
x=2hqx o neously present in the dynami@sefore the map on the one-

FIG. 7. Collapse plot of the average density profite,, to the  dimensional sequence is madme wonders what the influ-
form mye(x)/tg=tan(x), with y=2\qx, determined from simula- ence of the processes considered here will be in higher
tion of N=100 chains at differerit The collapse function expected dimensional matrices. We think that it is minor on the basis
from MF theory, tanf), is also plottedsolid line), andqg(\)’s are  of the following argument. One could strip the chain from its
computed fitting this functiortsee also Fig. b The inset displays  removable hairpins before the map on the 1D sequence is
the central part of the profile. made. The dynamics of this backbone would quite accurately

) o follow the rules of the RDM. The creation and destruction of
~ We have exploited the simplifying features of the dynam-ihe removable hairpins is fast compared to the changes in the
ICS In twWo ways: _ o chain due to the end point motion. Thus incorporating these

(A) By making a systematic expansion in the powers ofyrocesses will lead to a minor slowdown of the overall mo-

the driving fieldt for the density and the correlation func- tion which is dominated by the non-removable obstacles in

0.0

m (y)/'tq

tions. . . . the chain.
(B) By making on an appropriate level a mean field as-  This observation is in line with the calculations of Can-
sumption for the correlation function. polat et al. [12], who consider single- and double-bond

}umps. The latter are similar to our removable hairpins’ flip-
ping. They argue that the double-bond jumps give a renor-
malization of the single-bond motion and do not change the
relating physics.
_ In principle the phenomenon considered here could gen-
(mp)=tm(x;\), (55 erate the sort of kink instabilities leading to what is called
. . . . “tube leakage”[13], not comprised by repton models. How-
with x_the_ scaled po(sjlt_lonhvarlab[esfe_elqu.(|23_)]. Trl"rsl Ob'h hever, such effects do happen in a range of fields very strong
servatlc?n 'S recoyere In the mean |e. solution although t %ompared to the limit combination considered here. As we
mean field functional form ofm(x;\) dilﬁers from the true  gjt in the almost purely diffusive limit{— 0), it becomes
solution. The overall shape as predicted by the mean asather unlikely that a removable hairpin develops into such a
sumption represents in a remarkable way the simulations afize that it dominates the whole chain behavior.
the model. ) ) S ) We have actually seen how in a linear system a strong
In fact, it is possible to take this scaling limit directly in cyrrent is combined to a weak correlation between equal dis-
the equations and so derive a scaled hierarchy for the de”SiB{acements. This observation should apply also to the linear
and the correlations functiorisee Sec. Y. By expanding in  segments of the tube in the general RDM, and unremovable

powers of\ the hierarchy is solubléand reproduces of pairpins should then mainly be responsible for the stoW
course the scaling limit of the more primitive expansion in qyift.

powers oft). The terms in the expansion are polynomials in

X, which simplifies their calculation greatly. For the determi- ACKNOWLEDGMENTS

nation of the coefficients of the polynomials one has to sat-

isfy a set of linear equations that is larger than the number of We thank H. J. Hilhorst for stimulating discussions. G. S.
coefficients to play with. However, the set turns out to havewas financially supported by Stichting voor Fundamenteel
the right interdependence to allow a unique solution. Onderzoek der Materi@=OM).

Calculating a number of terms in the expansion in powers o
t, we find that the solution starts to depend for lakgenly

on the combination. = Nt?. For instance, the density profile
of the chain[see Eq.25)] obtains the form
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APPENDIX A: which exchanges the role ef1’s and 0's, and impliesm;)
SPINLIKE FORMULATION AND SYMMETRIES is antisymmetric around the middle point of the chain, since
- =n — 1 -
As already stressed in Sec. lll, operatoj=n;— 3 pos (mjy=—(mys1-;) (A7)

sesses the features of a sgivariable. The analogy with
spin systems can be made more explicit, because the wholgd then(mgy+ 1/2)) =0.
algebra can be rephrased into spin language. Indeed,

APPENDIX B: PERTURBATIVE THEORY

0 1
aJT: o ol= %(Ujmr 10Y)= %UT, (Ala) OF STATIONARY CORRELATION FUNCTIONS
As explained in Sec. lll, the stationary equation for the
0 0\ 1 1 average of an arbitrary number of density operatovih
aj= =5 (ogf—10))=50", (Alb)  different indice$ is derived imposing[m;m;---,H])=0.
1 0 2 2 ) . i .
The commutator average is straightforwardly calculated in
the spin formalism developed in the preceding section be-
n = 10 :E(lﬂf,Z) (Alc)  cause the definition ofs| implies
1o o/ 2 e
(slafO(y)[P(7)=(O(7));
1(1 0 1, ny
Mi=2l0 -1/ 2%" (Ald) (slaYO(y)|P(1)=1afO(7)). (B1)
whereo™¥'* are the well known Pauli matrices, and the pos-So everything may ultimately be expressed in terms of aver-
sible states for a segment are age products ofn;’s.
1 0 To calculate the density-density correlatigm;m;), we
must consider
o) o) w

i soin | b O=([mymy ,H])=(m;[my , 7]+ [m; , H]m). (B2
n spin languag ecomes
N1 The detailed set of equations is then
— (B+B_l) S o X X
=7 | & (0 F20{-2+ 20} -2 ACmymy) = (M- myp) (M my) H(mymy ) +(mymy )

=1
+ 2t[(m; _ymymy) — (mym; . ymy) + (mymy_ymy)
+t(ok— %) -1t , _ i<|_2- —
N 1 <mjm|m|+l>] (2$J$I 2,|$N 1),
(A3) (B33

A(mum)= — (M)~ (mym) +(mam)-+ (mym,_)

N-1
le (o)X 04 1)?+ 20 — 204

&
wheret= (B—B~Y/B+B™?) =tanhs,

‘H possesses two evident symmetries, first it is invariant +{mym; 1)+ 2t[ — (mymoym;) +{(mym;_,m;)
under the transformation
—(mmm;.)] (3=<IsN-1), (B3b)
o=~ o, ¢
X 4<mij>=§<mj>_<mjmr\|>+<mj—1mN>+<mj+1mN>
(Tl—)(TJ y
(Ad)
s +(mymy_ 1)+ 2t[(m;_gm;my) — (m;m; . ;M)
+{mymy_1my)] (2<sjsN-2), (B30
t——t,

t t
exchangingt+1's with 0’s under field inversion. This implies 4(mymy) = §<m1>— §<mN>+ 2 2(mymy) +{mzmy,)

(M) ()= 3 (a5 (t)=—(oDH(—t)=—(m)(—1). (A5) +(mymy_ 1) +2t[ —(mm,my)

. . . . + _
Hence,(m;)(t) is odd int. Likewise, the average of any (Mimy—1my) ], (B3d)

product of an oddeven number of differentm;’s is odd t t
(even in t. 2(mimj;1)= §<mj>_ §<mj+l>+<mjflmj+1>+<mjmj+2>
A second transformation leavir invariant is
of——d?, (A6) + 2t[(m;_ 1 mymy 4 1) —(Mym; My o) ]

j—N+1-j, (2<j<N-2), (B3¢
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2(myma) = 5 (M)~ t(mg) —(mams) +(mymg)

—2t{m;m,ms), (B3f)

2(my_ymy) =t{my_1)— %<mN>_<mN—1mN>+<mN—2mN>

+2t{my_omy_1My)- (B3g)

The set relates only to cases with<| because
(mym;)=(mm;). The first equation, foj and! in the bulk

has the form of a discrete Poisson equation. This is a generablve only m‘l) and finite differences ofm(?

property for any product of differemn;’s, sayn. Commuta-

tion with the first part of HamiItonianﬁAS), the scalar prod-
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Property(A6) implies

(mympy =My 1My, (B8)

so Egs.(B7) are not independent. Indeed E@®7b) is the
symmetry conjugate of EqB73a), and Eq.(B7¢) is the the
sum of these two. Summarlzmgl(”) is the solution of a
discrete Poisson equationB4), Wlth two independent
boundary condition$BC) (B6) and, say(B7b).
Consideringm(?, Eq. (B4) is homogeneous and the so-
lution may be expressed in terms of the lattice version of
planar harmonic functiongHF). Moreover, since the BC in-
i1, we are to
consider onIy HF of second order jrandl. Again the natu-
ral lattice variablemj(l):(Zj —N-—1)/4N, which is antisym-

uct, yields a finite difference equation of the second order fometric under Eq(A6). Since, in addition, Eq(B8) has to be

the n-density correlation. The second term7fy the vector
product,

of n factors couples to the product af+1 factors but the

open hierarchy can be closed and solved perturbatively as m(2) =
discussed in Sec. IV. Hereafter, we will explicitly work out a

few steps of such perturbative theory.
The general equation fon(? is

(n—=1) _

1 1) 1
(DJ+D|)mjﬂ:_2[mn11)| m}r11+1|+mj| 1) A

m; 51

(2<j<I—-1;l<N—1). (B4)

Where we define the second order finite difference as

Djf...,j,...Ef...,j_l,...+f...,j+1, .._Zf...",

" (B85)

Moreover, sincan!?) is defined forj #1 only, we can safely
extend its set of vaIues such to make Ed@3e)—(B3g) for-
mally equal to Eqs(B3a—(B3c), so extend validity of Eq.
(B4) to =]+ 1. This requires

m(n—l (nll
—_J mj+ 1
miy+miVy - 2ml = > > +2[m{ Y
m" ] (1<j<N-1)
]]]+1] ( s)= '

(B6)

Likewise, extendlngn(”) to the boundaries=0N+1, Eq.
(B4) holds also forj —1 =N, by means of Eqs(B3b)—
(B3d), provided

(n—1)
gy +mi) =~ ———2m?;Y (3=I=N-1),
(B7a)
(n-1)
] — .
miN+miR = 5 +2m\ N (2<j<=N-2),
(B7b)
(n—1) (n—1)
m m
1)
MER -+ M{R . +2miR= 5 T —2[mg
—mi\ N 1 (B7¢)

obeyed, there are only three admissible combinations of pla-

is the origin of the contributions from the nar HF of second order im(”, m™. We thus solve the
(n+1)-density correlation, multiplied by. So the product

system with the ansatz

mPmP+ ap(mY —mY) + ;. (BY)

j,1

Just three independent linear equationgils arise by sub-
stitution into the BC, and the final solution is

2N
N—l

N+1
4(N—1)

N+ 1
16N—-1)
(B10)

2 1 1 1 1
mi? = m(Um(? - (mi{D—m(Y)—

It is also easily realized that including higher order HF
would not change the result. Indeed these components would
have no counterpart on the right-hand s{g#S) of the BC.
Their coefficients would then obey a homogeneous linear
system, independent af, , 5 so they would be zero.

We can proceed further to calculate the first nonzero order
of the three density averagem;m,m;), which is m( . As
before, the stationary equation is obtained settmg equal to
zero the average of the commutafon;m,m; ,7{]. The gen-
eral equation is

(Dj+Dy+Dj){mymm;)
= — 2t[(m; _ gy mym;) — (M My M)
+ (MM memy) — (MMM my) 4 (mymem; -y my)
—(mmmm, )] (1<j<k—1k<I-1<N-1).
(B11)

Since (m;mm;) is defined essentially for £ j<k<I<N
special equations arise when one or more indices reach a
boundary value, namely

(mymmy) —3(mymmy) + (D + D) (mymmy)
= 2t[<mlm2mkml> %(mkmo —(mmy_,m,m)
+(mymmy ;g my) — (mymem; _;my)
+(mymemym;, ;)

(2<k<l—1<N-1),

(B123
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Concentrating onmfk)'I , the general equation is homoge-
neous sincegm; mkm,mf,> is assumed to start out &3(t%).
The BC involve onlym{?), which is a second order polyno-
mial in m{" . Hence, we try to expressi(y; in terms of
lattice 3D HF up to third power im{") and linear in each
variable. Nonlinear and higher power harmonics would not
have counterpart in the inhomogeneous terms on the RHS of
Eq. (B15), so their coefficients equal zero. Moreover, Eq.
(B13) must be obeyed. Our guess for the solution is thus

Dj{mymmy 1) +(mymy_ My q) +(mymemy ;o)

—2(mmmy, 1)
= 2t{(mj M 1 MMy 1) — (M MMMy )

(MM, 1) — (Mm;my)
4

— (MM MMy )

+(mmm Moy | (1<j<k—1<N-1).

3 _ 1), (1) (1 1 1)y (1
m},k),u—nmf 'mim )+‘}’2(m} '—mP)m

(B12h
_ +y3(mP+mY) + ym (B16)
Symmetry(A6) requires
Equating the left- with right-hand side of E@15) produces
(Mymemp) = —(My 1My 1-kMya-j)  (BL3) a set of six linear equations in the coefficients, of which just

four are linearly independent. The solution of such set is

so, like in the case of EqsB7a and (B7b), equations for 6N? _ N(N+1)
(mjmymy) and (m;m;,;m;) go over into Eqs(B12a and 71_m’ 72__m’
(B12b), respectively, by symmetry, and they do not provide
further independent conditions. Equations at boundaries are N+1 (3N+2)(N+1)
again made formally equivalent to the general one by extend- Y3 T TaN=—1 ' 74T T 1aN—1/(N—2)"

ing the set of values of our function to points adjacent to the 16(N-1) 16N-1)(N=-2)
boundaries and imposing consistency conditions on such eXt this stage we can go back to E(B4) and solve it for

t?:?ﬁc:n VT#:Séoe;hEZn&?gSIqegr;?errt:ie?jxgantign rgg m](ﬁ). This general equation has now a nonhomogeneous
(mymm;), icientm; k1S ' y the prob- - ps, wherem(), provides a second order polynomial in

(B17)

lem ;o : . .
© mY andm{® . Som{?) is the sum of a special solution of the
general equatioiB4) of the form
(Dj+ Dy DM == 2[m{" P = M D+ M Ty
1= pal (M) *m{M + mD(mi )2+ pf (m{M)?— (mi*)?]
(n—1) (n—1) (n—1)
Mk T M= T Ml
PRI b +palmiP(mf*)?— (mi)?m{V]
(1=<j<k<I<N), (B14) +pal (M{Y)2+(m{M)?], (B18)
plus a harmonic part accounting for the BEgs. (B6) and
(n-D (B7)]
myy +mi) = — ——-2m{', Y (2<k<I—-1<N-1),
(B153 hj = psmPmit + pg(mP —mi)+p,.  (B19)
(n) (n) (n)
m;', .+ m —2m;
B L The ansatan{{'=s; ;+h; , yields a well determined system
(n-1)_ (n—1) of linear equations in the coefficients, and we obtain
LU My k+1 (n—1)
= f_z[mj,k,k,wrl
. 8N? . ANAN+D)
—mlo 1] (1<j<k—1<N-1), PITIN-D(IN=2) " P27 3(N-1)(N-2)’
(B15b

_ 2N*(N+1)
PIT(N=1)(N-2)

N2(N+1)

P4 T I IN—1)(N=2)’
(B20)

which is a discrete Poisson problem in 3D with BEQs.
(B1539 and (B15b)] and the symmetry conjugate equations
obtained by Eq(B13). All other boundary equations, e.g.,
for m(lr]z’N or mj(f‘j)ﬂﬁz, do not generate independent condi-
tions. Indeed, originating frond[ m;m,m;,]), they yield
linear combinations of conditions already imposed in Egs.
(B12a and (B12h and the symmetry conjugate of those.
The system(B14) and (B15) is sufficient to determine the
solution form{"), .

—N3+7N?-4N

. _ N°~5N—-6
PST3(N—-1)(N=2)

Pe= ZaN-2)

_2N2—N—3
P71~ "96(N=1)
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