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Reptation in linear systems

G. Sartoni and J. M. J. van Leeuwen
Instituut Lorentz, Rijks Universiteit Leiden, 2300 RA Leiden, The Netherlands

~Received 14 August 1997!

A model suitable for reptation in linear systems under a driving field is proposed. Its dynamics is based on
the decoupling of opposite repton jumps, and is essentially different from reptation in higher dimensions,
namely the Rubinstein-Duke model~RDM!. The stationary density and correlation functions are calculated
perturbatively in the driving field. A meaningful mean field theory is also derived. Diffusion exhibits a strong
drift velocity and band collapse. Also a peculiar scaling behavior is found. The results address the sensitivity
of reptation process to the rules of motion and the boundary conditions.@S1063-651X~97!12912-9#

PACS number~s!: 83.20.Fk, 05.40.1j, 82.45.1z
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I. INTRODUCTION

The process of reptation is generally regarded as on
the basic mechanisms governing polymer diffusion throug
gel matrix. Its main ingredient is the accumulation of po
mer units inside a gel pore, and the subsequent redistribu
to neighboring pores. After the introduction of the idea by
Gennes@1#, it has developed into a basic ingredient in t
understanding of the polymer dynamics in a gel. Recen
Rubinstein@2# and Duke@3# have given a lattice realizatio
of the reptative motion, which makes it possible to simul
reptation and to test the basic features in a quantitative w
In the Rubinstein-Duke model~RDM! gel pores are repre
sented as a regular lattice of cells separated from one ano
by site obstacles. The polymer is schematized as a c
whose basic units,the reptons, are segments of the order o
its persistence length. This way reptons can move with
mutual tension along the channel~or tube! of cells that the
polymer traces out. Polymer self-avoidance is neglected
chain continuity is implemented by the requirement th
neighboring reptons occupy either the same or adjac
pores. Diffusion is realized by subsequent jumps of rept
to neighboring cells along the tube, whereas end reptons
also move to outer pores, feeding thus new cells to the tu

If a reference direction is chosen along the lattice dia
nal, the relative coordinate between successive reptons
assume only three values:$21,0,1%; see Fig. 1. Likewise, a
repton may move either up or down with respect to the r
erence direction. Thus reptation can be depicted as a
dimensional diffusion process with61 or 0 states and up
ward or downward moves. Acidic polymers, like DNA
become charged when solved in a gel. If an electric field
applied to the solution, the diffusion is driven along the fie
which is chosen along the reference direction. This featur
incorporated into the RDM by assigning a bias to hopp
rates, according to field direction and strength.

Despite its schematic nature the RDM exhibits a very r
and complex behavior and both theoretical results@2,4,5,8#
and simulations@3,6,7# compare quite well with experiment
on polymer diffusion in gels@9#. The main physical achieve
ment of the RDM consist of grasping the essential feature
chain reptation, which induces strong correlation among s
ments. The process of tube renewal at either ends of
polymer is also very well accomplished in the model. Pr
571063-651X/98/57~3!/3088~13!/$15.00
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ence of strong intersegment correlation represents, howe
the main source of failure of many attempts towards a th
retical solution of the model, which is particularly resista
e.g., to any perturbative approach, notwithstanding the s
eral steps forward that have been made@2,4,5,8#.

Although the rules of motion in the Rubinstein-Duk
model~RDM!, to be given below, are simple and natural, t
analysis of the model is complicated and has so far elude
comprehensive understanding. The model contains two
rameters: the lengthN and the driving fieldE. The limit E
→0 for fixed ~large! N is well understood. It leads among

FIG. 1. Repton model of polymer diffusion through a gel. G
pores are represented as a regulard-dimensional lattice of cells
~hered52). Lattice sites represents obstacles to the motion of po
mer which thus sneaks from cell to cell. Polymer is conceived a
chain ofN11 reptons, which represent its persistence length un

EW is the driving field serving also as a reference direction. Beingxj

the coordinate alongEW of j th repton, then relative displacement o
two neighboring reptons,yj5xj2xj 21, may assume three values
yj511,0,21 in lattice units. Reptons may hop either up, at a r
B5exp«/2, or down, at a rateB21. Each move corresponds t
exchange the state of two neighboringyj , one of which is 0, and

the other11 or 21. So that chain motion projected alongEW may
be regarded as a 1d diffusion process of11 and21 particles along
N sites with open boundary conditions, because end reptons
hop to unoccupied cells, thus providing other11’s or 21’s. The
state vector isy5(y1 , . . . ,yN). Considering the example here dis
played,N510 andy5(21,11,0,11,11,21,0,11,11,0).
3088 © 1998 The American Physical Society
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57 3089REPTATION IN LINEAR SYSTEMS
others to a drift velocityV which is proportional toE and
inversely proportional toN. Less understood is the scalin
limit in which E→0 andN→` with an appropriate combi
nation of powers ofE and N kept fixed. This scaling limit
may be regarded as the thermodynamic limit for the stati
ary state. In contrast to equilibrium one cannot simply stu
the limit N→` at fixed~small! E, as this leads to situation
where the stationary state is never reached as the limit o
arbitrary initial state.

This paper is a contribution to the understanding of
sensitivity of the scaling limit with respect to the details
the rules of motion of the RDM. We will exploit the amb
guity, inherent to the RDM, in the mapping from the tu
configuration to the one-dimensional~1D! diffusion process
representation, to define a simpler repton model which
1D, would be more faithful to the spirit of the motion rule
as the actual 1D version of the RDM is. As it will appear, t
model is not trivial at all; a systematic expansion in the dr
ing field is feasible and features a well defined scaling lim
theory. Moreover a mean field approximation provides
explicit scaling solution which compares also quite well w
numerical simulations, both qualitatively and quantitative
The results are quite different from the physics of the RD
showing that the motion rules of the RDM are well taken
a higher dimensional embedding matrix and shedding li
on the intricate correlations which develop in the station
state of the RDM.

In the following section we introduce the model and t
appropriate formalism to deal with the average properties
polymer diffusion, which are then derived in Sec. III fro
the microscopic model. The perturbative theory of dens
and correlation functions is developed in Sec. IV, and
continuum, scaling limit is presented in Sec. V. In Sec.
we work out a mean field formulation of the problem, and
Sec. VII data from Monte Carlo simulations are compared
analytic results. Section VIII is devoted to conclusions. A
pendixes A and B illustrate, respectively, a convenient re
mulation of the problem in spin language, and the det
about the perturbative expansion.

II. REPTON MODEL AND QUANTUM HAMILTONIAN
FORMALISM

As mentioned, in the RDM the gel matrix where diffusio
takes place is represented by ad-dimensional hypercubic
lattice of cells ~gel pores!, whereas each lattice site is a
obstacle to polymer displacement. The polymer is a chain
N11 reptons connected byN segments. The chain move
through the cells according to usual rules for the RDM:~i!
reptons may move diagonally from pore to pore;~ii ! internal
reptons can move only to pores that the chain already o
pies, thus ensuring that reptation is the only diffusion mec
nism; ~iii ! in each pore along the chain there must be at le
one repton;~iv! end reptons may also move to neighbori
empty cells.

To make it also a model for electrophoresis, a sm
chargeq is assigned to each repton and an electric field,E, is
applied along the lattice diagonal, fixing also the referen
direction. Thus spatial symmetry is broken, and upwa
move rates are biased by a factor
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B5exp~«/2!, «5
qlE

kBT
, ~1!

while downward moves are biased by a factorB21. l is the
projection of the lattice constant along the reference dir
tion.

Taking xj as the coordinate ofj th repton along the pre
ferred direction~see, e.g., Fig. 1!, polymer configuration can
be expressed in terms of theN relative coordinates:
yj5xj2xj 21, j 52,3, . . . ,N11, corresponding also to th
orientation of the segment connecting two neighboring r
tons ~see Fig. 1!.

The probability density,P(y,t), for chain configuration
y5(y1 ,y2 , . . . ,yN) at timet, evolves according to the mas
ter equation

dP~y,t!

dt
5(

y8
@W~yuy8!P~y8,t!2W~y8uy!P~y,t!#, ~2!

whereW(yuy8) are transition rates, to be specified below.
In view of a more convenient description, the model m

be rewritten in a lattice-gas language, exploiting a quant
Hamiltonian formalism. Consider again the chain ofN11
reptons, each segmentyj is regarded as a site which may b
either empty or occupied by: an A-particle,yj51, or a B-
particle, yj521. Particles may hop to neighboring emp
sites and be created or annihilated at both ends. The stoc
tic time evolution of the system is described by
Schrödinger-like equation:

duP~t!&
dt

5HuP~t!&, ~3!

where

uP~t!&5(
y

P~y,t!uy&, ^y8uHuy&5W~y8uy!. ~4!

Conservation of probability is equivalent to the relation

^suH50; ^su5(
y

^yu. ~5!

^su is called the projection state and it is used to define tim
dependent average of an observable, sayO(y), as

^O~t!&5^suO~y!uP~t!&5^suO~y!eHtuP~0!&. ~6!

The definition of the stochastic operatorH, will then deter-
mine the repton model completely.

TheA particles exclude each other and the same holds
the B particles. Also theA particles exclude theB particles
and vice versa. So we have to use hard-core boson oper
or rather spin-1 operators. We takeaj

†5M j
12, aj5M j

21,
bj

†5M j
32, bj5M j

23 as creation and annihilation operators
A particles andB particles, respectively, on sitej . nj

a5M j
11

andnj
b5M j

33 are the corresponding site number operators
particles, andnj

0512nj
a2nj

b5M j
22. M j

pq is a 333 matrix
with elements (M j

pq)m,n5dp,mdq,n acting on sitej @10#. The
commutation relations follow from the matrix representati
of these operators. Thus the stochastic operator is
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3090 57G. SARTONI AND J. M. J. van LEEUWEN
H5b1~B!1bN~B21!1 (
j 51

N21

Tj~B!, ~7!

where

b j~B!5B~aj1dbj
†1nj

b21!1B21~daj
†1bj1nj

a21!,
~8a!

Tj~B!5B~aj
†aj 111bjbj 11

† 2nj
0nj 11

a 2nj
bnj 11

0 !

1B21~ajaj 11
† 1bj

†bj 112nj
anj 11

0 2nj
0nj 11

b !.

~8b!

As is noted, the dimensionalityd survives only as a param
eter in the d-fold degeneracy of moves stretching en
segments inb1 and bN . The similarity with quantum me-
chanics is not as powerful as one would like it to be, sinceH
is not Hermitian and anad hocdefinition of time-dependen
average is required; see Eq.~6!.

As double site-occupancy is forbidden, the motion ru
as described by the interaction terms inTj do not allow re-
moval of ‘‘hair-pin’’ configurations such as that depicted
Fig. 2. The first and last state, which are different by t
order of the intermediate pair11,21, cannot be transforme
into each other by an allowed intermediate step. The
drawn leaves an empty cell in the path of the polymer a
disrupts therefore the integrity of the chain. In the sub
quent Fig. 3 a sequence of configurations is drawn which
quite well possible in the spirit of the RDM. The first and la
configuration are described by the same sequences as in
2. The intermediate state is formally not allowed by the m
tion rules of the RDM, but perfectly correct in the spirit o
repton-modelization of polymer diffusion. However in RDM
thed-dimensional chain is mapped onto a 1D process, wh
washes out the distinction between the configurations

FIG. 2. Example of an unremovable hair-pin configuration.
double occupancy of a11 and21 would be allowed this might be
easily eliminated, e.g., by means of the process sketched here,
ing then to unphysical consequences. In the second snapshot d
line represents the 0 segment virtually going through the obsta

FIG. 3. Example of a removable hair-pin configuration whi
might be eliminated through a sequence of two moves, displa
here, provided double occupation,61, is allowed to segment state
s
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Figs. 2 and 3. Therefore a conceptually legitimate proc
such as in Fig. 3 is then equally forbidden as that in Fig.
Since every cell hasd upper or lower nearest neighbors, th
RDM neglects removable hair-pin configurations, such as
Fig. 3, once everyd times. Hence it becomes more and mo
accurate asd increases. In one dimension, constraints i
plied by interaction terms in Eq.~7! are thus too strict, there
are actually no obstacles to the polymer motion and any l
may be removed~see, e.g., Fig. 4!. So we are led to conside
a 1D repton model in which theA particles andB particles
may interchange via the process sketched in the middle
Fig. 3 or equivalently in the sequence of Fig. 4. By allowin
the simultaneous presence of anA andB particle in the same
pore, a61 occupation, each segment can be in four poss
states: 0,11,21,61. We take the particle operatorsa† and
b† as a†5a†

^ I and b†5I ^ b†, acting on a product space
uyj&5uyj&a^ uyj&b . This way double occupation is permitte
and the annihilation and creation operators fulfill the sta
dard hard-core boson commutation relation~commuting on
different segments and anticommuting on the same s
ment!. Thus we are led to the following stochastic operat

H5(
j 52

N

@B~aj 21
† aj2aj 21aj 21

† aj
†aj !1B21~aj 21aj

†

2aj 21
† aj 21ajaj

†!#1B~aN
† 2aNaN

† !1B21~aN2aN
† aN!

1B21~a1
†2a1a1

†!1B~a12a1
†a1!1(

j 52

N

@B21~bj 21
† bj

2bj 21bj 21
† bj

†bj !1B~bj 21bj
†2bj 21

† bj 21bjbj
†!#

1B21~bN
† 2bNbN

† !1B~bN2bN
† bN!1B~b1

†2b1b1
†!

1B21~b12b1
†b1!. ~9!

We take this operator as defining our one-dimensio
model. The great simplification is the decoupling of the m
tion of the 11’s and 21’s. IndeedH5Ha(B)1Hb(B),
hence the probability density factorizes:uP(t)&5uPa(t)& ^

uPb(t)&. Moreover, sinceHb(B)5Ha5b(B21), 11’s and
21’s exhibit the same dynamics under opposite field, a
one needs to concentrate only on one species of particle
the remainder we will focus our attention on11 segments
only, namely onaj

† operators, then, unless otherwise spe
fied, ana label appended to any operator or observable w
be always understood.

Decoupling upward segments from downward ones d
not make the model trivial. For instance the stationary pr

ad-
tted
e.

d

FIG. 4. Here a 1D repton model is shown, where the qu
inversion of a folded configuration through a double occupan
dynamics is a realistic process.
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57 3091REPTATION IN LINEAR SYSTEMS
ability density does not factorize into the product of sing
segment densities, contrary to what one might expect. Ind
it is easily seen that the state

uPprod&5)
j 51

N

~qj1pjaj
†!u0&, qj1pj51, ~10!

wherepj is the average density ofA particle at segmentj , is
stationary, i.e.,HuPprod&50, if

Bqj 21pj2B21pj 21qj50 ~ j 52, . . . ,N21!, ~11a!

Bp12B21q150, ~11b!

BqN2B21pN50, ~11c!

whose only solution is the trivial zero-field one

pj5
1
2 ; j 51,2,... ,N and B51. Thus, strictly speaking, in

the stationary regime segments are correlated, but as we
see in the remainder, long chains possess remarkable m
field properties. Since polymer diffusion process is con
niently described in terms of average quantities like d
velocity, V and curvilinear velocity,J, we are to derive the
corresponding time evolution equations from the mic
scopic dynamics, and eventually obtain an approximated
lution.

III. PARTICLE DENSITY AND CURRENT

A particles represent upward segments, the density op
tor nj5aj

†aj measures the density of11 at segmentj . Its
evolution equation is obtained from Eqs.~3,6! as

d

dt
^nj&5^sunjHuP~t!&5^su@nj ,H#uP~t!& ~12!

since, due to Eq.~5!, in general

^O~y!H&5^@O~y!,H#&. ~13!

^su possesses another useful property,^su5^0u) j 51
N (11aj ),

so

^suaj
†O~y!uP~t!&5^~12nj !O~t!&;

^suajO~y!uP~t!&5^njO~t!&, ~14!

and the commutator average,^@nj ,H#&, is easily calculated
in terms ofnj only. Simple algebra yields then the continui
equation

d

dt
^nj&5^ j 21&2^ j&, ~15!

where particle currents,^ j&, are defined as

^ j&5B21^nj~12nj 11!&2B^~12nj !nj 11&

~ j 51,2, . . . ,N21!, ~16a!

^0&5B21^12n1&2B^n1&, ~16b!

^N&5B21^nN&2B^12nN&. ~16c!
ed

all
an
-
t

-
o-

ra-

In the simple case«50, everything is homogeneous

^nj&5 1
2, so it is convenient to shift every density by suc

zero-field solution. The new density operators aremj5nj2
1
2

and have the average bounded by2 1
2<^mj&<

1
2. In zero

field ^mj&50. So mj behave as a spin-1
2 variable. Further-

more one may use a different field parameter, namely

t5
B2B21

B1B21
5tanh

«

2
, ~17a!

and then

B5
~11t !

2
~B1B21!, B215

~12t !

2
~B1B21!.

~17b!

Since the system is symmetric under exchange of11’s with
0’s and simultaneous field reversion~see Appendix A for a
detailed discussion about symmetries ofH), one has

^mj&~ t !5^ajaj
†2 1

2 &52^mj&~2t !. ~18!

Hence,^mj&(t) is odd in t. Likewise, the average of an
product of an odd~even! number of differentmj ’s is odd
~even! in t. The dynamics is also invariant when11’s and
0’s are interchanged and the segment labelling order is
versed,j→N112 j . This property implieŝ mj& is symmet-
ric around the middle point of the chain,

^mj&52^mN112 j& ~19!

and thuŝ m(N11)/2&50.
The stationary state is obtained imposingd/dt ^mj&50,

which, through Eq.~15!, implies

^ j&5J ; j 51,2,... ,N, ~20!

with J stationary current, constant through the chain. Co
bining this with definitions~16!, one is left with the system

5^mj&2^mj 11&1
t

2
@4^mjmj 11&21#

3~ j 51,2,... ,N21!, ~21a!

522^m1&2t, ~21b!

52^mN&2t, ~21c!

where5 (2/B1B21)J is also an odd function oft, like J,
since it is a current andt;O(«). Equation~21! is typical for
an open hierarchy with more unknowns than equations
each stage. If we had knowledge about the average of
product ^mjmj 11&, the values of the single averages^mj&
would be determined. Anticipating that the average of
product is of a higher order we omit it here to get a notion
the structure of the lowest order approximation ofmj . The
equations are easily solved and the solution is denoted a

^mj&5tmj
~1!1O~ t3!, j 5t j ~1!1O~ t3!, ~22!

with
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mj
~1!5

2 j 2N21

4N
~ j 51,2,...,N!, ~23a!

 ~1!52
N11

2N
. ~23b!

By omitting the product of the averages the solution~23!
becomes strictly proportional tot. Note that this solution
obeys the symmetry relations~18! and ~19!.

IV. PERTURBATIVE EXPANSION OF DENSITY,
CURRENT, AND CORRELATION FUNCTION

When« is small, so ist5 «
2 1O(«3), providing an ideal

weak field expansion parameter. We make the following
satz for the expansions in powers oft:

5t ~1!1t3 ~3!1O~ t5!, ~24a!

^mj&5tmj
~1!1t3mj

~3!1O~ t5!, ~24b!

^mjml&5t2mj ,l
~2!1t4mj ,l

~4!1O~ t6!, ~24c!

^mjmkml&5t3mj ,k,l
~3! 1O~ t5!. ~24d!

The powers that are included are compatible with the sy
metry relation~18!. The essential point of the proposed e
pansion is that the average of a product ofn variablesmj
starts with the powertn. For the product of a pair this is
self-evident, since a zeroth order is excluded, due to the
of correlations in the undriven system. This justifies the
lution ~23! as the first order int. The justification for the
ansatz~24! is based on the fact that for every product
allowed combination~no equal indices! one can write the
equation of motion as

d

dt
^mjml•••mk&5^@mjml•••mk ,H#&

5^mjml•••@mk ,H#&1•••

1^@mj ,H#ml•••mk&. ~25!

The stationarity condition requires the left-hand side to
zero. Now the commutator@mj ,H# involves terms linear in
themj and coupling terms containing the product of the lat
and its neighbors,mj 61. Thus a product ofn factors couples
through the Hamiltonian to a product ofn11 factors, as we
already encountered in Eq.~21! for n51. By the ansatz tha
term starts out with anO(tn11) and the coupling inH in-
volves another factort. So the lowest order of the product o
n factors can be calculated without information of the high
correlation functions. Furthermore higher orders of the
pansion of then-product average, sayO(tn12p), are coupled
to O(tn1112(p21)) of the (n11) product, which have bee
calculated at a previous stage of the expansion. So, as
know mj

(1) we can recursively build up the solution in an
order. To illustrate the method we first write down the equ
tion for mj

(1) , which is obtained expanding Eqs.~21! in t:
-

-

ck
-

e

r

r
-

we

-

 ~1!5mj
~1!2mj 11

~1! 2
1

2
, ~26a!

 ~1!52mN
~1!21, ~26b!

 ~1!522m1
~1!21, ~26c!

with the solution anticipated in Eq.~23!. Then we may pro-
ceed further to considermj ,l

(2) . The general term is easy~see
Appendix B!:

4mj ,l
~2!5mj 21,l

~2! 1mj ,l 11
~2! 1mj 11,l

~2! 1mj ,l 21
~2!

~2< j < l 22;l<N21!. ~27!

Special equations hold for the cases wherej 51, j 5 l 21
and l 5N, which connect them to the lower ordermj

(1) . We
have spelled them out in Appendix B. The form of Eq.~27!
is that of the discrete Laplace equation. The solution is
termined in Appendix B and reads

mj ,l
~2!5

2N

N21
mj

~1!ml
~1!2

N11

4~N21!
~mj

~1!2ml
~1!!2

N11

16~N21!
.

~28!

The correlation is long-ranged because the actual form
mj ,l

(2) is essentially determined by boundary conditions~BC!
that globally influence the solution. Concerning in particu
adjacent segments,l 5 j 11, we have

mj , j 11
~2! 5

2N

N21
~mj

~1!!21
mj

~1!

~N21!
2

~N11!~N22!

16N~N21!
.

~29!

This is a convex parabola, hence adjacent segments ha
stronger tendency to be anticorrelated in the bulk of
chain.

Knowing mj ,l
(2) , mj

(3) can be calculated. From Eq.~21! the
general equation set formj

(n) (n.1) is

 ~n!5mj
~n!2mj 11

~n! 12mj , j 11
~n21! ~ j 51,2, . . . ,N21!,

~30a!

 ~n!52mN
~n!522m1

~n! . ~30b!

In view of Eq. ~19! every observable containingmj is more
conveniently expressed in terms ofmj

(1) , in place of j , as it
directly embodies the symmetry. Given the form ofmj ,l

(2) we
may then solve Eq. ~30! for mj

(3) by the ansatz
mj

(3)5k1(mj
(1))31k2mj

(1) , which provides

mj
~3!5

8N2

3~N21!
~mj

~1!!32
~2N223N13!

12~N21!
mj

~1! , ~31a!

 ~3!52
N11

24N
. ~31b!

We have also calculated the leading order of^mjmkml&,
mj ,k,l

(3) in terms ofmj
(1) andmj ,k

(2) ~see Appendix B for details!.
This function displays similar global correlation effects d
termined by BC. We can then proceed further to obtainmj ,l

(4) ,
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which is a polynomial of fourth order inmj
(1) . Then from Eq.

~30! we argue thatmj
(5) must be of the form

mj
~5!5h1~mj

~1!!51h2~mj
~1!!31h3mj

~1! . ~32!

Direct substitution yields

h15
64N4

5~N21!~N22!
; h25

216N4152N324N2

9~N21!~N22!
,

~33!

h35
22N52130N41235N31225N22270N2180

360N~N21!~N22!
,

~34!

and

 ~5!5
8N4133N31303N22262N2180

720N2~N22!
. ~35!

Further steps in the perturbative expansion would req
knowledge of̂ mjmkmlmp& and so on.

In the limit N→`, the lattice model is amenable of
continuum approximation in terms ofx; j /N, wherex de-
rivatives substitute finite differences, neglecting system
cally higher orders in 1/N. In this ‘‘hydrodynamic’’ limit
^mx&, ^mxmy& and so on, are determined by simple~partial!
differential equations which we give in the next section.

V. CONTINUUM LIMIT THEORY

When the chain is very long one may neglect the det
relating to each single segment at length scales smaller
1/N. In a coarse grained description any observable may
considered as a smooth function of the central variablx
defined as

x5
j 2 ~N11!/2

N
. ~36!

So the continuum analog of Eq.~24! is

^mx&5tm~1!~x!1t3m~3!~x!1•••, ~37a!

^mxmy&5t2m~2!~x,y!1t4m~4!~x,y!1•••, ~37b!

^mxmymz&5t3m~3!~x,y,z!1•••. ~37c!

Considering leading terms in the limitN→` the perturbative
results we obtain in Sec. IV and in Appendix B are summ
rized as

52
t

2
2

t

2N
2

t3

24
1

t5N

90
1O~ t7!, ~38a!

^mx&5tF x

2
1t2NS x3

3
2

x

12D1t4N2S 2

5
x52

2

9
x31

11

360
xD G

1O~ t7! ~xP[ 2 1
2 , 1

2 ] !, ~38b!
e

i-

ls
an
e

-

^mxmy&5t2H xy

2
2

~x2y!

8
2

1

16
1t2NF ~x3y1xy3!

2

2
~x32y3!

6
1

~x2y2xy2!

4
2

~x21y2!

8

2
xy

12
1

~x2y!

48
1

1

48G J 1O~ t6!

3~2 1
2 <x,y< 1

2 !, ~38c!

^mxmymz&5t3F3

4
xyz2

~x2z!y

4
2

~x1z!

32
2

3

32
yG

1O~ t5! ~2 1
2 <x,y,z< 1

2 !. ~38d!

So we have evidence that in the limitN@1, t2N has to be the
suitable power combination for the thermodynamic scal
limit: N→`, t→0, with l5t2N finite. We can implement
the scaling limit by the ansatz

^mx1
•••mxn

&5tnm̃~x1 , . . . ,xn ;l!. ~39!

In terms of these continuous functions Eq.~21! becomes

5t@m̃~x;l!2m̃~x1 1/N ;l!#

12t@ t2m̃~x,x1 1/N ;l!2 1
4 #, ~40a!

522tm̃~2 1
2 1 1/2N ;l!2t52tm̃~ 1

2 2 1/2N ;l!2t.
~40b!

In view of the perturbative results we take as scaling fo
for the 

5t S 2
1

2
1

1

N
̃ ~l! D . ~41!

We expand aroundx and count an orderN21 as equivalent
to t2. We then find to leading order

̃ ~l!52
dm̃~x;l!

dx
12lm̃~x,x;l! ~42!

and the boundary conditions

m̃~ 1
2 ;l!52m̃~2 1

2 ;l!5 1
4 . ~43!

The value of ̃ (l) has to be chosen such that the bound
conditions are fulfilled.

In a similar way we obtain form̃(x,y;l) the equation

¹2m̃~x,y;l!52l@m̃1~x,x,y;l!1m̃2~x,x,y;l!

1m̃2~x,y,y;l!1m̃3~x,y,y;l!# ~44!

with the boundary conditions

m̃~x, 1
2 ;l!5

m̃~x;l!

4
, ~45a!
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m̃1~x,x;l!2m̃2~x,x;l!5
1

2

]m̃~x;l!

]x
, ~45b!

where

m̃k~x1 ,•••,xn ;l!5
]m̃~x1 ,•••,xn ;l!

]xk
. ~46!

The general structure of the hierarchy is clear. In the b
m̃(x1 ,•••,xn ;l) couples to a higher membe
m̃(x1 ,•••,xn11 ,l) and at the boundaries to a lower memb
m̃(x1 ,•••,xn21 ;l).

Such a hierarchy is difficult to solve. We must eith
make an assumption of the higher correlation function
terms of the lower ones~as we do in the next section!, or
make a perturbation expansion in powers ofl ~as we have
done in the previous section!. Due to the fact that the cou
pling term to the higher correlation function has a factorl in
front, the lower correlation functions decouple in the expa
sion from the higher ones. As one observes from the re
~38! this expansion has the simplifying feature that the ter
in the expansion are polynomials in thexj . So solution of
the hierarchy means in essence matching of the coeffici
of the polynomials. As we have noticed in Appendix B, o
has in general more equations to satisfy than coefficient
play with. However, the equations turn out to have the ri
interdependency to allow a unique solution.

VI. MEAN FIELD THEORY

Our mean field~MF! ansatz consist of approximatin
m̃(x,x;l) by @m̃(x;l)#2 in Eq. ~42!. This amounts to the
usual approximation of the average of a product by the pr
uct of the averages. We are thus led to the MF equation

dm̃MF~x;l!

dx
52lm̃MF

2 ~x,l!2 ̃ MF~l!, ~47!

and the same boundary conditions~43!. Equation ~47! is
straightforwardly integrated, giving

mMF~x;l!5tq~l!tan„2lq~l!x…, ~48a!

̃ 522lq2~l!, ~48b!

with q(l) determined by

2q~l!tan„lq~l!…5 1
2 . ~49!

In limiting casesq(l) is easily calculated

q~l!.
1

2Al
for ql!1, ~50a!

q~l!.
p

2l
for l@1. ~50b!

The solution~48! has the required scaling form and its sim
plicity allows us to illustrate the main features of reptati
process. Forlq!1, mMF(x) is linear inx as a consequenc
k

r

n

-
lt
s

ts

to
t

-

of slow diffusion of 11 segments from the head of th

chain,x5 1
2, where they are supplied at rateB, towards the

tail, x52 1
2, where they disappear at the same rate. Asl,

i.e., t and/orN, increases, the profile ofm(x) becomes more
and more flat and it squeezes onto thex axis, just to rise or
fall down sharply upon approaching respectivelyx5 1/2 or

x52 1
2. In these conditions11 segments are constantly fe

to the chain at its head, where they stay to wait a zero s
ment coming from the bulk. Of course a symmetric scena
applies to zeros created at the chain tail. In the bulk

environment is essentially random,^nj&5^12nj&5 1
2, due to

the the mixing of the two opposing streams of11’s and 0’s.
We may also compare MF and exact results on the pro

m(x), up toO(t5). From Eqs.~48! and ~49!,

mMF~x!5tF x

2
1t2NS x3

6
2

x

24D1t4N2S x5

15
2

x3

36
1

x

360D G
1O~ t7!, ~51a!

MF52
t

2
2

t

2N
1

t3

24
2

t5N

360
1O~ t7!. ~51b!

When compared with Eq.~38! the discrepancy is of orde
t2N, so the MF approximation is expected to fail fort2N;1.
The second term in the expansion ofm(x) is underestimated
by a factor of 2 and the difference increases at higher ord
and indeedmMF(x) remains belowm(x) for increasing val-
ues oft; compare also Fig. 7. Nevertheless, within this ran
it provides in a simple form a meaningful determination
chain profile and current. To estimate the degree of accur
of mean field solution~48! as well as its reliability, a com-
parison with numerical simulation is also desirable.

Before going on to discuss simulations, it is, howev
worth stressing that perturbative results for are very robust.
Indeed in the limitN→` with l5const., the corrections ar
small, of ordert3 or t/N, as shown by Eqs.~51! and ~38!.
Moreover, the discrepancy between the MF and exact va
of  becomes irrelevant under such condition. Hen
52 (t/2)1O(t3) and band collapse is predicted for th
repton model in the limitN@1. Since is essentially the
drift velocity, V522, so V is insensitive toN when the
latter is large.

VII. COMPARISON WITH THE SIMULATIONS

Monte Carlo~MC! simulations of our repton model hav
been performed, always restricting to11’s dynamics, with
move rules and rates as dictated byHa . Chains ofN5100
and 200 segments have been considered. For each val
tP]0,1@ , about 23N4 MC steps have been iterated and, af
waiting aboutN4 steps for thermalization, chain configura
tions have been sampled everyN steps~i.e., every whole

chain sweep! to determine the average densities:m̄j5 n̄ j2
1
2.

By means of a one-parameter nonlinear fitq(l) is then
calculated fromm̄j assuming the MF form

m̄~x!

t
5q tan~2lqx! ~52!
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according to Eq.~48!. Fitted values ofq(l) are plotted in
Fig. 5 againstl. The numerical solution of Eq.~49! is also
shown for comparison. Agreement between MF theory a
simulation data is excellent.

The average current

̄ 5
2

B1B21
J ~53!

is also computed and compared with our analytical res
>2 t/2, in Fig. 6. We obtain a good agreement even thou
N;100, hence for relatively short chains.

Finally Fig. 7 displays the rescaled plot ofm̄j against the
MF expectation

mMF~x!

tq
5tan~x!, ~54!

with x52lqx, exploiting the fitted values ofq(l). Curves
collapse well for smallert values, while they slightly depar
from theoretic prediction whent increases. However, even i
the regionl.1, where MF is expected to fail, the qualitativ
behavior ofm̄j is well reproduced by such approximation.

Simulations thus provide evidence that the MF theory r
resents a rather accurate approximation whenl&1, and it is
meaningful also for larger values, namely under strong e
tric field, where correlations are expected to be most
evant.

FIG. 5. Plot of parameterq(l) determined by fitting simulation

data for segment density,m̄(x), to the expected MF behavior, fo
N5100. Behavior of fitted values~open circles! is in excellent
agreement with numerical solution~dashed line! of the equation
determiningq(l) in the MF theory.
d

t:
h

-

c-
l-

VIII. DISCUSSION AND CONCLUSIONS

We have considered a genuine one-dimensional ver
of the Rubinstein-Duke model~RDM! for reptation. In the
RDM the configurations of the polymer are mapped on
one-dimensional sequence. In this map the distinction
tween removable and nonremovable hairpins is washed
~see Figs. 2–4!. The higher the dimension of the embeddin
matrix, the less frequent these removable hairpins occur.
linear system the paths of the polymer contain only rem
able hairpins, which makes the dynamics essentially diff
ent from the higher dimensional cases. It means that forw
(11) and backward (21) segments may interchange an
when they are allowed to coexist the motion of the two s
cies is completely decoupled. While the RDM may be se
as a spin-1 chain, the linear version maps on a set of
decoupled spin-12 systems.

The resulting dynamics is still far from trivial due th
basic feature of all reptation models that the chain confi
rations can only be refreshed by shrinking and growing at
ends of the chain. As the linear systems have no inte
obstacles the motion of the chain under the influence o
driving field is much faster. Indeed due to decoupled dyna
ics hairpins are just trailing or removed, e.g., such as th
sketched in Fig. 4, essentially at the same rate as a sim
repton drift, namelyB2B21;t. This makes the drift veloc-
ity linear in the driving field andindependentof the chain
lengthN. In the language of electrophoresis it means a to
band collapse.

FIG. 6. Average current,̄ (t), of 11 segments calculated from
simulation of chains ofN5100 and N5200 segments. The
asymptotic,N→`, prediction,52 t/2, is also plotted for com-

parison ~dotted line!. Since N is not very large, ̄ (t) departs
slightly from the ideal curve due to smallt/N corrections~dot-
dashed line, withN5100), as predicted by perturbative results, E
~23!.
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We have exploited the simplifying features of the dyna
ics in two ways:

~A! By making a systematic expansion in the powers
the driving field t for the density and the correlation func
tions.

~B! By making on an appropriate level a mean field a
sumption for the correlation function.

Calculating a number of terms in the expansion in powers
t, we find that the solution starts to depend for largeN only
on the combinationl5Nt2. For instance, the density profil
of the chain@see Eq.~25!# obtains the form

^mj&5tm̃~x;l!, ~55!

with x the scaled position variable@see Eq.~23!#. This ob-
servation is recovered in the mean field solution although
mean field functional form ofm̃(x;l) differs from the true
solution. The overall shape as predicted by the mean
sumption represents in a remarkable way the simulation
the model.

In fact, it is possible to take this scaling limit directly i
the equations and so derive a scaled hierarchy for the de
and the correlations functions~see Sec. V!. By expanding in
powers of l the hierarchy is soluble~and reproduces o
course the scaling limit of the more primitive expansion
powers oft). The terms in the expansion are polynomials
x, which simplifies their calculation greatly. For the determ
nation of the coefficients of the polynomials one has to s
isfy a set of linear equations that is larger than the numbe
coefficients to play with. However, the set turns out to ha
the right interdependence to allow a unique solution.

FIG. 7. Collapse plot of the average density profile,m̄j , to the
form mMF(x)/tq5tan(x), with x52lqx, determined from simula-
tion of N5100 chains at differentt. The collapse function expecte
from MF theory, tan(x), is also plotted~solid line!, andq(l)’s are
computed fitting this function~see also Fig. 5!. The inset displays
the central part of the profile.
-

f

-

f

e

s-
of

ity

t-
of
e

The correlations in the chain are built up from the boun
aries and show an unexpected behavior. For smalll the cor-
relations are small but significantly different from mean fie
predictions. In the largel limit we see the disappearance
these effects, the density profile behavior,^mj&, at fixed t
and for increasingl displays an almost flat profile in th
bulk, characteristic of a random environment, with two o
posite and sharp wings at the ends. Such two localized
cesses of density are sufficient to maintain the curr
through the whole chain. This is the reason why the M
approximation does so well in the largel limit.

In the RDM neither an expansion in powers oft is pos-
sible nor a meaningful mean field assumption. The sca
behavior of the RDM, as it is suggested by simulations of
model, involves the combinationNt @4,7,8#. The drift veloc-
ity is much slower than the result we find here and depe
in the weak field limit on the combinationt/N @4,5,7,8#. Also
it is not likely that the shape of the density is a function
the parameterx, which varies on the scaleN. There is evi-
dence that near the endpoints the shape varies on the
N1/2 @11#.

Given the fact that the two types of motion are simul
neously present in the dynamics~before the map on the one
dimensional sequence is made! one wonders what the influ
ence of the processes considered here will be in hig
dimensional matrices. We think that it is minor on the ba
of the following argument. One could strip the chain from
removable hairpins before the map on the 1D sequenc
made. The dynamics of this backbone would quite accura
follow the rules of the RDM. The creation and destruction
the removable hairpins is fast compared to the changes in
chain due to the end point motion. Thus incorporating th
processes will lead to a minor slowdown of the overall m
tion, which is dominated by the non-removable obstacles
the chain.

This observation is in line with the calculations of Ca
polat et al. @12#, who consider single- and double-bon
jumps. The latter are similar to our removable hairpins’ fli
ping. They argue that the double-bond jumps give a ren
malization of the single-bond motion and do not change
relating physics.

In principle the phenomenon considered here could g
erate the sort of kink instabilities leading to what is call
‘‘tube leakage’’@13#, not comprised by repton models. How
ever, such effects do happen in a range of fields very str
compared to the limit combination considered here. As
sit in the almost purely diffusive limit («→0), it becomes
rather unlikely that a removable hairpin develops into suc
size that it dominates the whole chain behavior.

We have actually seen how in a linear system a stro
current is combined to a weak correlation between equal
placements. This observation should apply also to the lin
segments of the tube in the general RDM, and unremova
hairpins should then mainly be responsible for the slowt/N
drift.

ACKNOWLEDGMENTS

We thank H. J. Hilhorst for stimulating discussions. G.
was financially supported by Stichting voor Fundament
Onderzoek der Materie~FOM!.



h

s

an

s

y

ce

he

in
be-

er-

57 3097REPTATION IN LINEAR SYSTEMS
APPENDIX A:
SPINLIKE FORMULATION AND SYMMETRIES

As already stressed in Sec. III, operatormj5nj2
1
2 pos-

sesses the features of a spin-1
2 variable. The analogy with

spin systems can be made more explicit, because the w
algebra can be rephrased into spin language. Indeed,

aj
†5S 0 1

0 0D 5
1

2
~s j

x1ıs j
y!5

1

2
s†, ~A1a!

aj5S 0 0

1 0D 5
1

2
~s j

x2ıs j
y!5

1

2
s2, ~A1b!

nj5S 1 0

0 0D 5
1

2
~11s j

z!, ~A1c!

mj5
1

2 S 1 0

0 21D 5
1

2
s j

z , ~A1d!

wheresx,y,z are the well known Pauli matrices, and the po
sible states for a segment are

u11&5S 1

0D ; u0&5S 0

1D . ~A2!

In spin languageH becomes

H5
~B1B21!

4 H (
j 51

N21

~sW j•sW j 11!12s1
x2212sN

x 22

1t~sN
z 2s1

z!2ıtF (
j 51

N21

~sW j3sW j 11!z12s1
y22sN

y G J ,

~A3!

wheret5 (B2B21/B1B21)5tanh
«

2
.

H possesses two evident symmetries, first it is invari
under the transformation

s j
z→2s j

z ,

s j
x→s j

x ,
~A4!

s j
y→2s j

y ,

t→2t,

exchanging11’s with 0’s under field inversion. This implie

^mj&~ t !5 1
2 ^s j

z&~ t !52^s j
z&~2t !52^mj&~2t !. ~A5!

Hence,^mj&(t) is odd in t. Likewise, the average of an
product of an odd~even! number of differentmj ’s is odd
~even! in t.

A second transformation leavingH invariant is
sj

z→2sj
z,

~A6!

j→N112 j ,
ole

-

t

which exchanges the role of11’s and 0’s, and implieŝmj&
is antisymmetric around the middle point of the chain, sin

^mj&52^mN112 j& ~A7!

and then̂ m(N11/2)&50.

APPENDIX B: PERTURBATIVE THEORY
OF STATIONARY CORRELATION FUNCTIONS

As explained in Sec. III, the stationary equation for t
average of an arbitrary number of density operators~with
different indices! is derived imposinĝ @mjml•••,H#&50.
The commutator average is straightforwardly calculated
the spin formalism developed in the preceding section
cause the definition of̂su implies

^sus j
xO~y!uP~t!&5^O~t!&;

^sus j
yO~y!uP~t!&5ı^s j

zO~t!&. ~B1!

So everything may ultimately be expressed in terms of av
age products ofmj ’s.

To calculate the density-density correlation,^mjml&, we
must consider

05^@mjml ,H#&5^mj@ml ,H#1@mj ,H#ml&. ~B2!

The detailed set of equations is then

4^mjml&5^mj 21ml&1^mj 11ml&1^mjml 21&1^mjml 11&

12t@^mj 21mjml&2^mjmj 11ml&1^mjml 21ml&

2^mjmlml 11&# ~2< j < l 22 ;l<N21!,

~B3a!

4^m1ml&52
t

2
^ml&2^m1ml&1^m2ml&1^m1ml 21&

1^m1ml 11&12t@2^m1m2ml&1^m1ml 21ml&

2^m1mlml 11&# ~3< l<N21!, ~B3b!

4^mjmN&5
t

2
^mj&2^mjmN&1^mj 21mN&1^mj 11mN&

1^mjmN21&12t@^mj 21mjmN&2^mjmj 11mN&

1^mjmN21mN&# ~2< j <N22!, ~B3c!

4^m1mN&5
t

2
^m1&2

t

2
^mN&1

1

2
22^m1mN&1^m2mN&

1^m1mN21&12t@2^m1m2mN&

1^m1mN21mN&#, ~B3d!

2^mjmj 11&5
t

2
^mj&2

t

2
^mj 11&1^mj 21mj 11&1^mjmj 12&

12t@^mj 21mjmj 11&2^mjmj 11mj 12&#

~2< j <N22!, ~B3e!
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2^m1m2&5
t

2
^m1&2t^m2&2^m1m2&1^m1m3&

22t^m1m2m3&, ~B3f!

2^mN21mN&5t^mN21&2
t

2
^mN&2^mN21mN&1^mN22mN&

12t^mN22mN21mN&. ~B3g!

The set relates only to cases withj , l because
^mjml&5^mlmj&. The first equation, forj and l in the bulk
has the form of a discrete Poisson equation. This is a gen
property for any product of differentmj ’s, sayn. Commuta-
tion with the first part of Hamiltonian~A3!, the scalar prod-
uct, yields a finite difference equation of the second order
the n-density correlation. The second term inH, the vector
product, is the origin of the contributions from th
(n11)-density correlation, multiplied byt. So the product
of n factors couples to the product ofn11 factors but the
open hierarchy can be closed and solved perturbatively
discussed in Sec. IV. Hereafter, we will explicitly work out
few steps of such perturbative theory.

The general equation formj ,l
(n) is

~D j1Dl !mj ,l
~n!522@mj 21,j ,l

~n21! 2mj , j 11,l
~n21! 1mj ,l 21,l

~n21! 2mj ,l ,l 11
~n21! #

~2< j , l 21;l<N21!. ~B4!

Where we define the second order finite difference as

D j f •••, j ,•••

[ f
•••, j 21,•••

1 f
•••, j 11,•••

22 f
•••, j ,•••

.
~B5!

Moreover, sincemj ,l
(2) is defined forj Þ l only, we can safely

extend its set of values such to make Eqs.~B3e!–~B3g! for-
mally equal to Eqs.~B3a!–~B3c!, so extend validity of Eq.
~B4! to l 5 j 11. This requires

mj , j
~n!1mj 11,j 11

~n! 22mj , j 11
~n! 5

mj
~n21!

2
2

mj 11
~n21!

2
12@mj , j 11,j 11

~n21!

2mj , j , j 11
~n21! # ~1< j <N21!.

~B6!

Likewise, extendingmj ,l
(n) to the boundariesj 50,N11, Eq.

~B4! holds also forj 51, l 5N, by means of Eqs.~B3b!–
~B3d!, provided

m0,l
~n!1m1,l

~n!52
ml

~n21!

2
22m0,1,l

~n21! ~3< l<N21!,

~B7a!

mj ,N
~n! 1mj ,N11

~n! 5
mj

~n21!

2
12mj ,N,N11

~n21! ~2< j <N22!,

~B7b!

m0,N
~n!1m1,N11

~n! 12m1,N
~n!5

m1
~n21!

2
2

mN
~n21!

2
22@m0,1,N

~n21!

2m1,N,N11
~n21! #. ~B7c!
ral

r

as

Property~A6! implies

^mjml&5^mN112 lmN112 j&, ~B8!

so Eqs.~B7! are not independent. Indeed Eq.~B7b! is the
symmetry conjugate of Eq.~B7a!, and Eq.~B7c! is the the
sum of these two. Summarizing,mj ,l

(n) is the solution of a
discrete Poisson equation,~B4!, with two independent
boundary conditions~BC! ~B6! and, say,~B7b!.

Consideringmj ,l
(2) , Eq. ~B4! is homogeneous and the so

lution may be expressed in terms of the lattice version
planar harmonic functions~HF!. Moreover, since the BC in-
volve only mj

(1) and finite differences ofmj ,l
(2) , we are to

consider only HF of second order inj andl . Again the natu-
ral lattice variablemj

(1)5(2 j 2N21)/4N, which is antisym-
metric under Eq.~A6!. Since, in addition, Eq.~B8! has to be
obeyed, there are only three admissible combinations of
nar HF of second order inmj

(1) , ml
(1) . We thus solve the

system with the ansatz

mj ,l
~2!5a1mj

~1!ml
~1!1a2~mj

~1!2ml
~1!!1a3 . ~B9!

Just three independent linear equations ina i ’s arise by sub-
stitution into the BC, and the final solution is

mj ,l
~2!5

2N

N21
mj

~1!ml
~1!2

N11

4~N21!
~mj

~1!2ml
~1!!2

N11

16~N21!
.

~B10!

It is also easily realized that including higher order H
would not change the result. Indeed these components w
have no counterpart on the right-hand side~RHS! of the BC.
Their coefficients would then obey a homogeneous lin
system, independent ofa1,2,3, so they would be zero.

We can proceed further to calculate the first nonzero or
of the three density average,^mjmkml&, which is mj ,k,l

(3) . As
before, the stationary equation is obtained setting equa
zero the average of the commutator@mjmkml ,H#. The gen-
eral equation is

~D j1Dk1D j !^mjmkml&

522t@^mj 21mjmkml&2^mjmj 11mkml&

1^mjmk21mkml&2^mjmkmk11ml&1^mjmkml 21ml&

2^mjmkmlml 11&# ~1, j ,k21,k, l 21,N21!.

~B11!

Since ^mjmkml& is defined essentially for 1< j ,k, l<N,
special equations arise when one or more indices reac
boundary value, namely

^m2mkml&23^m1mkml&1~Dk1Dl !^m1mkml&

52tF ^m1m2mkml&
1

4
^mkml&2^mjmk21mkml&

1^mjmkmk11ml&2^mjmkml 21ml&

1^mjmkmlml 11&G ~2,k, l 21,N21!,

~B12a!
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D j^mjmkmk11&1^mjmk21mk11&1^mjmkmk12&

22^mjmkmk11&

52tF ^mjmj 11mkmk11&2^mj 21mjmkmk11&

1
^mjmk11&2^mjmk&

4
2^mjmk21mkmk11&

1^mjmkmk11mk12&G ~1, j ,k21,N21!.

~B12b!

Symmetry~A6! requires

^mjmkml&52^mN112 lmN112kmN112 j& ~B13!

so, like in the case of Eqs.~B7a! and ~B7b!, equations for
^mjmkmN& and ^mjmj 11ml& go over into Eqs.~B12a! and
~B12b!, respectively, by symmetry, and they do not provi
further independent conditions. Equations at boundaries
again made formally equivalent to the general one by exte
ing the set of values of our function to points adjacent to
boundaries and imposing consistency conditions on such
tended values. Then considering thet expansion of
^mjmkml&, the coefficientmj ,k,l

(n) is determined by the prob
lem

~D j1Dk1Dl !mj ,k,l
~n! 522@mj 21,j ,k,l

~n21! 2mj , j 11,k,l
~n21! 1mj ,k21,k,l

~n21!

2mj ,k,k11,l
~n21! 1mj ,k,l 21,l

~n21! 2mj ,k,l ,l 11
~n21! #

~1<, j ,k, l<N!, ~B14!

m0,k,l
~n! 1m1,k,l

~n! 52
mk,l

~n21!

2
22m0,1,k,l

~n21! ~2,k, l 21,N21!,

~B15a!

mj ,k,k
~n! 1mj ,k11,k11

~n! 22mj ,k,k11
~n!

5
mj ,k

~n21!2mj ,k11
~n21!

2
22@mj ,k,k,k11

~n21!

2mj ,k,k11,k11
~n21! # ~1, j ,k21,N21!,

~B15b!

which is a discrete Poisson problem in 3D with BC@Eqs.
~B15a! and ~B15b!# and the symmetry conjugate equatio
obtained by Eq.~B13!. All other boundary equations, e.g
for m1,k,N

(n) or mj , j 11,j 12
(n) , do not generate independent cond

tions. Indeed, originating from̂@mjmkml ,H#&, they yield
linear combinations of conditions already imposed in E
~B12a! and ~B12b! and the symmetry conjugate of thos
The system~B14! and ~B15! is sufficient to determine the
solution formj ,k,l

(n) .
re
d-
e
x-

.

Concentrating onmj ,k,l
(3) , the general equation is homoge

neous sincêmjmkmlmp& is assumed to start out asO(t4).
The BC involve onlymj ,k

(2) , which is a second order polyno
mial in mj

(1) . Hence, we try to expressmj ,k,l
(3) in terms of

lattice 3D HF up to third power inmj
(1) and linear in each

variable. Nonlinear and higher power harmonics would n
have counterpart in the inhomogeneous terms on the RH
Eq. ~B15!, so their coefficients equal zero. Moreover, E
~B13! must be obeyed. Our guess for the solution is thus

mj ,k,l
~3! 5g1mj

~1!mk
~1!ml

~1!1g2~mj
~1!2ml

~1!!mk
~1!

1g3~mj
~1!1ml

~1!!1g4mk
~1! . ~B16!

Equating the left- with right-hand side of Eq.~B15! produces
a set of six linear equations in the coefficients, of which ju
four are linearly independent. The solution of such set is

g15
6N2

~N21!~N22!
; g252

N~N11!

~N21!~N22!
;

~B17!

g352
N11

16~N21!
; g452

~3N12!~N11!

16~N21!~N22!
.

At this stage we can go back to Eq.~B4! and solve it for
mj ,l

(4) . This general equation has now a nonhomogene
RHS, wheremj ,k,l

(3) provides a second order polynomial
mj

(1) andml
(1) . Somj ,l

(4) is the sum of a special solution of th
general equation~B4! of the form

sj ,l5r1@~mj
~1!!3ml

~1!1mj
~1!~ml

~1!!3#1r2@~mj
~1!!32~ml

~1!!3#

1r3@mj
~1!~ml

~1!!22~mj
~1!!2ml

~1!#

1r4@~mj
~1!!21~ml

~1!!2#, ~B18!

plus a harmonic part accounting for the BC@Eqs. ~B6! and
~B7!#

hj ,l5r5mj
~1!ml

~1!1r6~mj
~1!2ml

~1!!1r7 . ~B19!

The ansatzmj ,l
(4)5sj ,l1hj ,l yields a well determined system

of linear equations in the coefficientsr i , and we obtain

r15
8N3

~N21!~N22!
; r252

4N2~N11!

3~N21!~N22!
;

r35
2N2~N11!

~N21!~N22!
; r452

N2~N11!

2~N21!~N22!
;

~B20!

r55
2N317N224N

3~N21!~N22!
; r65

N225N26

24~N22!
;

r75
2N22N23

96~N21!
.
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